Answer:
$700
Step-by-step explanation:
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
Answer:
f'(x) = -1/(1 - Cos(x))
Step-by-step explanation:
The quotient rule for derivation is:
For f(x) = h(x)/k(x)

In this case, the function is:
f(x) = Sin(x)/(1 + Cos(x))
Then we have:
h(x) = Sin(x)
h'(x) = Cos(x)
And for the denominator:
k(x) = 1 - Cos(x)
k'(x) = -( -Sin(x)) = Sin(x)
Replacing these in the rule, we get:

Now we can simplify that:

And we know that:
cos^2(x) + sin^2(x) = 1
then:
