Speed of wave is given as

Wavelength of the wave is given as

now from the formula of wave time period we can say




so it will have time period of T = 4 s
Answer:
Part A:
The proton has a smaller wavelength than the electron.
<
Part B:
The proton has a smaller wavelength than the electron.
<
Explanation:
The wavelength of each particle can be determined by means of the De Broglie equation.
(1)
Where h is the Planck's constant and p is the momentum.
(2)
Part A
Case for the electron:

But 


Case for the proton:


Hence, the proton has a smaller wavelength than the electron.
<em>Part B </em>
For part b, the wavelength of the electron and proton for that energy will be determined.
First, it is necessary to find the velocity associated to that kinetic energy:


(3)
Case for the electron:

but


Then, equation 2 can be used:

Case for the proton :

But 


Then, equation 2 can be used:

Hence, the proton has a smaller wavelength than the electron.
Answer:
Given, Apparent weight(W₂)=4.2N
Weight of liquid displaced (u)=2.5N
Let weight of body in air = W₁
Solution,
U=W₁-W₂
W₁=4.2=2.5=6.7N
∴Weight of body in air is 6.7N
Answer:
Wind is the primary renewable resource used for electric power generation in the state. In 2019, wind provided 97% of the state's renewable energy generation, and Illinois was sixth in the nation in utility-scale (1 megawatt or greater) wind capacity, with about 5,200 megawatts online.
Explanation:
Refer to the diagram shown below.
g = 9.8 m/s², and air resistance is ignored.
For mass m₁:
The normal reaction is m₁g.
The resisting force is R₁ = μm₁g.
For mass m₂:
The normal reaction is m₂g.
The resisting force is R₂ = μm₂g.
Let a = the acceleration of the system.
Then
(m₁ + m₂)a = F - (R₁ + R₂)
(14+26 kg)*(a m/s²) = (65 N) - 0.098*(9.8 m/s²)*(14+26 kg)
40a = 65 - 38.416 = 26.584
a = 0.6646 m/s²
Answer: 0.665 m/s² (nearest thousandth)