There are three forces acting on the book.
1. Force due to gravity
2. Force exerted downward by the hamster
3. Normal Force in reaction to the downward forces
Since the book is not moving, the net force is zero. The summation of all forces must be zero. Then we could find the normal force which is unknown (denoted as x).
∑F = -(4 kg)(9.81 m/s2) - 3 N + x =0
∑F = -39.24 N - 3N + x =0
x = 42 N
Therefore, the normal force is 42 N.
Coulomb's law:
Force = (<span>8.99×10⁹ N m² / C²<span>) · (charge₁) · (charge₂) / distance²
= (</span></span><span>8.99×10⁹ N m² / C²<span>) (1 x 10⁻⁶ C) (1 x 10⁻⁶ C) / (1.0 m)²
= (8.99×10⁹ x 1×10⁻¹² / 1.0) N
= 8.99×10⁻³ N
= 0.00899 N repelling.
Notice that there's a lot of information in the question that you don't need.
It's only there to distract you, confuse you, and see whether you know
what to ignore.
-- '4.0 kg masses'; don't need it.
Mass has no effect on the electric force between them.
-- 'frictionless table'; don't need it.
Friction has no effect on the force between them,
only on how they move in response to the force.
</span></span>
Answer:
C
Explanation:
The pattern is adding .5 to the cm every .1 in weight you just continue the table
Answer:
The term rotational and irrotational flow is associated withe the flow of particles in fluid.
The common example of irrrotational flow can be seen on the carriages of the Ferris wheel (giant wheel).
Explanation:
- If the fluid is rotating along its axis with the streamline flow of its particles,then this type of flow is rotational flow.
- Similarly if fluid particles do not rotate along its axis while flowing in a stream line flow then it is considered as the irrotational flow.
- In majority, if the flow of fluid is viscid then it is rotational.
- Fluid in a rotating cylinder is an example of rotating flow.