Answer:
Explanation:
a ) It is given that bomb was at rest initially , so , its momentum before the explosion was zero.
b ) We shall apply law of conservation of momentum along x and y direction separately because no external force acts on the bomb.
If v be the velocity of the third part along a direction making angle θ
with x axis ,
x component of v = vcosθ
So momentum along x axis after explosion of third part = mv cosθ
= 10 v cosθ
Momentum along x of first part = - 5 x 42 m/s
momentum of second part along x direction =0
total momentum along x direction before explosion = total momentum along x direction after explosion
0 = - 5 x 42 + 10 v cosθ
v cosθ = 21
Similarly
total momentum along y direction before explosion = total momentum along y direction after explosion
0 = - 5 x 38 + 10 v sinθ
v sinθ= 21
squaring and and then adding the above equation
v² cos²θ +v² sin²θ = 21² +19²
v² = 441 + 361
v = 28.31 m/s
Tanθ = 21 / 19
θ = 48°
Answer:
Photoelectric Effect
Explanation:
Photoelectric Effect is a phenomenon in which electrically charged particles are released from or within a material when it absorbs electromagnetic radiation.
Answer:
Scalar quantity
Vector quantity
Explanation:
A scalar quantity is a quantity that is fully described by magnitude alone. Examples include; mass, temperature etc
A vector quantity is described by both magnitude and direction. E.g force, weight etc
To solve this problem we will apply the concepts related to the kinematic equations of motion. We will start calculating the maximum height with the given speed, and once the total height of fall is obtained, we will proceed to calculate with the same formula and the new height, the speed of fall.
The expression to find the change in velocity and the height is,

Replacing,


Thus the total height reached by the ball is
H = 22m+13.0612m
H = 35.0612m
Now calculate the velocity while dropping down from the maximum height as follows

Substituting the new height,



Answer:
a) 20s
b) 500m
Explanation:
Given the initial velocity = 100 m/s, acceleration = -10m/s^2 (since it is moving up, acceleration is negative), and at the maximum height, the ball is not moving so final velocity = 0 m/s.
To find time, we apply the UARM formula:
v final = (a x t) + v initial
Replacing the values gives us:
0 = (-10 x t) + 100
-100 = -10t
t = 10s
It takes 10s for the the ball to reach its max height, but it must also go down so it takes 2 trips, once going up and then another one going down, both of which take the same time to occur
So 10s going up and another 10s going down:
10x2 = 20s
b) Now that we have v final = 0, v initial = 100, a = -10, t = 10s (10s because maximum displacement means the displacement from the ground to the max height) we can easily find the displacement by applying the second formula of UARM:
Δy = (1/2)(a)(t^2) + (v initial)(t)
Replacing the values gives us:
Δy = (1/2)(-10)(10^2) + (100)(10)
= (-5)(100) + 1000
= -500 + 1000
= 500 m
Hope this helps, brainliest would be appreciated :)