3xy-5x+9y-45
Step-by-step explanation:
Step by Step Solution
STEP1:STEP2:Pulling out like terms
2.1 Pull out like factors :
3y - 15 = 3 • (y - 5)
Equation at the end of step2: (x • (3y - 5)) + 9 • (y - 5) STEP3:Equation at the end of step 3 x • (3y - 5) + 9 • (y - 5) STEP4:Trying to factor a multi variable polynomial
4.1 Split 3xy-5x+9y-45
4.1 Split 3xy-5x+9y-45
into two 2-term polynomials
-5x+3xy and +9y-45
This partition did not result in a factorization. We'll try another one:
3xy-5x and +9y-45
This partition did not result in a factorization. We'll try another one:
3xy+9y and -5x-45
This partition did not result in a factorization. We'll try another one:
3xy-45 and +9y-5x
This partition did not result in a factorization. We'll try another one:
-45+3xy and +9y-5x
This partition did not result in a factorization. We'll try
I think its 1000 numbers because there from 1 to 999 there are 999 numbers, and then you add zero because it is also a whole number.
Answer:
<em>The height of the bullding is 717 ft</em>
Step-by-step explanation:
<u>Right Triangles</u>
The trigonometric ratios (sine, cosine, tangent, etc.) are defined as relations between the triangle's side lengths.
The tangent ratio for an internal angle A is:

The image below shows the situation where Ms. M wanted to estimate the height of the Republic Plaza building in downtown Denver.
The angle A is given by his phone's app as A= 82° and the distance from her location and the building is 100 ft. The angle formed by the building and the ground is 90°, thus the tangent ratio must be satisfied. The distance h is the opposite leg to angle A and 100 ft is the adjacent leg, thus:

Solving for h:

Computing:
h = 711.5 ft
We must add the height of Ms, M's eyes. The height of the building is
711.5 ft + 5 ft = 716.5 ft
The height of the building is 717 ft
In this question , it is given that the land is 1.19 hectares. And the land developer splitting it into 9 identical properties . So to find the size of each property, we need to divide 1.19 by 9 and on doing that, we will get 0.13 hectares .
So the size of each property is 0.13 hectares .