Answer:
The current lags the potential difference by π/2 in an inductor
Explanation:
The potential difference leads to the current by
. Alternate signals such as current and voltage -in this case- are periodic, this means that this signals are repeated at fixed spaces of time. Thus, In an inductor the current lags the potential difference by
.
The heart rate will likely decrease. As the cardiac muscle, or heart, gets stronger, it takes less effort to pump more blood. As a result, the heart will probably beat less, decreasing the heart rate. This is why athletes often have lower heart rates than the average person.
I need more details like r u reading from something
Answer:
Explanation:
Let the velocity after first collision be v₁ and v₂ of car A and B . car A will bounce back .
velocity of approach = 1.5 - 0 = 1.5
velocity of separation = v₁ + v₂
coefficient of restitution = velocity of separation / velocity of approach
.8 = v₁ + v₂ / 1.5
v₁ + v₂ = 1.2
applying law of conservation of momentum
m x 1.5 + 0 = mv₂ - mv₁
1.5 = v₂ - v₁
adding two equation
2 v ₂= 2.7
v₂ = 1.35 m /s
v₁ = - .15 m / s
During second collision , B will collide with stationary A . Same process will apply in this case also. Let velocity of B and A after collision be v₃ and v₄.
For second collision ,
coefficient of restitution = velocity of separation / velocity of approach
.5 = v₃ + v₄ / 1.35
v₃ + v₄ = .675
applying law of conservation of momentum
m x 1.35 + 0 = mv₄ - mv₃
1.35 = v₄ - v₃
adding two equation
2 v ₄= 2.025
v₄ = 1.0125 m /s
v₃ = - 0 .3375 m / s
The shadow would subsequently drop the temperature in the city, forcing warmer air to rush in and violently destroy countless buildings. There would also be “black rain,” which would be the radioactive ash and dust that would liquify and pour down on the city and we would all die.