In order to calculate the angle, we can use the formula below for a constructive interference (the interference is constructive because the fringe is bright):

Where d is the distance between the slits, m is the order of the interference and lambda is the wavelength.
So, using d = 8.25 * 10^-5, m = 2 and lambda = 4.5 * 10^-7, we have:

Therefore the correct option is the second one.
Answer:
a. Angular velocity = 0.267rad/s.
b. Centripetal acceleration = 56.25m/s.
Explanation:
<u>Given the following data;</u>
Mass, m = 8kg
Radius, r = 4m
Constant speed, V = 15m/s
a. To find the angular velocity
Angular velocity = radius/speed
Substituting into the equation, we have;
Angular velocity = 4/15
Angular velocity = 0.267rad/s
b. To find the acceleration;
Centripetal acceleration = V²/r
Substituting into the equation, we have;
Centripetal acceleration = 15²/4
Centripetal acceleration = 225/4
Centripetal acceleration = 56.25m/s.
When you rub a balloon on a sweater, for example, some electrons come off and end up on the balloon. The fibers have lost electrons giving them a positive charge. The rubber gained electrons giving it a negative charge. ... The positively charged fibers are now attracted to the negatively charged balloon.
Answer:
2.73×10¯³⁴ m.
Explanation:
The following data were obtained from the question:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Wavelength (λ) =?
Next, we shall determine the energy of the ball. This can be obtained as follow:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Energy (E) =?
E = ½m²
E = ½ × 0.113 × 43²
E = 0.0565 × 1849
E = 104.4685 J
Next, we shall determine the frequency. This can be obtained as follow:
Energy (E) = 104.4685 J
Planck's constant (h) = 6.63×10¯³⁴ Js
Frequency (f) =?
E = hf
104.4685 = 6.63×10¯³⁴ × f
Divide both side by 6.63×10¯³⁴
f = 104.4685 / 6.63×10¯³⁴
f = 15.76×10³⁴ Hz
Finally, we shall determine the wavelength of the ball. This can be obtained as follow:
Velocity (v) = 43 m/s
Frequency (f) = 15.76×10³⁴ Hz
Wavelength (λ) =?
v = λf
43 = λ × 15.76×10³⁴
Divide both side by 15.76×10³⁴
λ = 43 / 15.76×10³⁴
λ = 2.73×10¯³⁴ m
Therefore, the wavelength of the ball is 2.73×10¯³⁴ m.
Weow that’s cool but what is your question