Answer:
Their electrons are placed in a higher number of orbitals
Explanation:
- Suppose a element be Ga .
The atomic no is 31
The configuration is given by

Or
![\\ \sf\longmapsto [Ar]3d^{10}4s^24p^1](https://tex.z-dn.net/?f=%5C%5C%20%5Csf%5Clongmapsto%20%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E1)
1) Answer is: molar mas of ammonia is 17.031 g/mol.
M(NH₃) = Ar(N) + 3 · Ar(H) · g/mol.
M(NH₃) = 14.007 + 3 · 1.008 · g/mol.
M(NH₃) = 17.031 g/mol.
2) Answer is: molar mas of lead(II) chloride is 278.106 g/mol.
M(PbCl₂) = Ar(Pb) + 2 · Ar(Cl) · g/mol.
M(PbCl₂) = 207.2 + 2 · 35.453 · g/mol.
M(PbCl₂) = 278.106 g/mol.
3) Answer is: molar mas of acetic acid is 60.052 g/mol.
M(CH₃COOH) = 2 · Ar(C) + 2 · Ar(O) + 4 · Ar(H) · g/mol.
M(CH₃COOH) = 2 · 12.0107 + 2 · 15.9994 + 4 · 1.008 · g/mol.
M(CH₃COOH) = 60.052 g/mol.
High energy waves have short wavelengths and thus high frequencies as a result.
To find moles : moles= Mass (C₄H₂O₄) / RFM (C₄H₂O₄)
so moles = 147.7 / 114 = <span>1.2956mol
hope that helps </span>
Explanation:
The reaction equation will be as follows.

Calculate the amount of
dissolved as follows.

It is given that
= 0.032 M/atm and
=
atm.
Hence,
will be calculated as follows.
=
= 
= 
or, = 
It is given that 
As, ![K_{a} = \frac{[H^{+}]^{2}}{[CO_{2}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5E%7B2%7D%7D%7B%5BCO_%7B2%7D%5D%7D)
= 
= 
Since, we know that pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
So, pH = 
= 5.7
Therefore, we can conclude that pH of water in equilibrium with the atmosphere is 5.7.