Answer:
You also know about the mass of that sample, if you know the moles
(First option)
Explanation:
Moles = Mass / Molar mass
Moles . Molar mass = Mass
For example, I have 4 moles of H₂O
Molar mass H₂O = 18 g/m
4 m . 18 g/m = 72 g
If I have 4 moles of H₂O, I also have 72 grams of water too.
6.8 is the pH of the solution after 10 ml of 5M NaOH is added.
Explanation:
Data given:
Molarity of C6H5CCOH = 0.100 M
molarity of ca(c6h5coo)2 = 0.2 M
Ka = 6.3 x 10^-5
first pH is calculated of the buffer solution
pH = pKa+ log 10 ![\frac{[A-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D)
pKa = -log10[Ka]
pka = -log[6.3 x10^-5]
pKa = 4.200
putting the values to know pH of the buffer
pH = 4.200 + log 10 
pH = 4.200 + 0.3
pH = 4.5 (when NaOH was not added, this is pH of buffer solution)
now the molarity of the solution is calculated after NaOH i.e Mbuffer is added
MbufferVbuffer = Mbase Vbase
putting the values in above equation:
Mbuffer = 
= 
= 0.01 M
molarity or [ A-] = 5M
pH = pKa+ log 10 ![\frac{[A-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D)
pH = 4.200 + log 10 
pH = 4.200+ 2.69
pH = 6.8
Answer:
number of moles is inversely proportional to the Temperature
Explanation:
As we know
PV = nRT
where P is the pressure
V is the volume
n is the number of moles
R is the gas constant
and T is the temperature
If we see the equation, we can find that n is inversely proportional to the Temperature
The Correct Answer Is <span>Both Processes Produce Energy From Mass. </span>