Answer:
![[Pb^{2+}]=3.9 \times 10^{-2}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D3.9%20%5Ctimes%2010%5E%7B-2%7DM)
this is the concentration required to initiate precipitation
Explanation:
⇄
Precipitation starts when ionic product is greater than solubility product.
Ip>Ksp
Precipitation starts only when solution is supersaturated because solution become supersaturated then it does not stay in this form and precipitation starts itself only solution become saturated.
This usually happens when two solutions containing separate sources of cation and anion are mixed together and here also we are mixing lead (||)nitrate solution(source of lead(||)) into the Cl- solution.
![Ip=[Pb^{2}][2Cl^-]^2=Ksp](https://tex.z-dn.net/?f=Ip%3D%5BPb%5E%7B2%7D%5D%5B2Cl%5E-%5D%5E2%3DKsp)

lets solubility=S
![[Pb^{2+}] = S](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%20%3D%20S)
![[Cl^-]=2S](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D2S)
![Ksp=[Pb^{2+}]\times [Cl^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5Ctimes%20%5BCl%5E-%5D%5E2)


![S=\sqrt[3]{\frac{Ksp}{4} }](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BKsp%7D%7B4%7D%20%7D)

this is the concentration required to initiate precipitation
Answer:
4 is the answer
Explanation:
i am not sure for this question
Below are the choices:
<span>The independent variable is the number of dry cells, and the dependent variable is the length of time the bulb works.
</span><span>The independent variable is the length of time the bulb works, and the dependent variable is the number of dry cells.
</span><span>The independent variable is the number of dry cells, and the dependent variable is the amount of energy available.
</span><span>The independent variable is the amount of energy available, and the dependent variable is the number of dry cells.
</span>
I think the answer is <span>The independent variable is the number of dry cells, and the dependent variable is the amount of energy available.</span>
Answer: Option (4) is the correct answer.
Explanation:
A mixture is defined as a substance that contains two or more different substance that are physically mixed with each other.
If solute particles are evenly distributed in a solvent then it is known as a homogeneous mixture.
For example, salt dissolved in water is a homogeneous mixture.
If solute particles are unevenly distributed into the solvent then it is known as a heterogeneous mixture.
For example, sand in water is a heterogeneous mixture.
Thus, we can conclude that the statement a mixture must contain at least two different substances, is correct about mixtures.
Use your head or a formula website.