1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
3 years ago
10

An interstellar space probe is launched from Earth. After a brief period of acceleration it moves with a constant velocity, 70.0

% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 15.9 years as measured in a rest frame. (a) How long do the batteries on the space probe last as measured by mission control on Earth?
yr
(b) How far is the probe from Earth when its batteries fail, as measured by mission control?
ly
(c) How far is the probe from Earth, as measured by its built-in trip odometer; when its batteries fail?
ly
Physics
1 answer:
sleet_krkn [62]3 years ago
3 0

Answer:

22.26 years

, 15.585 light years  , 11.13 light years

Explanation:

a)

t' = t/(\sqrt{1-(v/(c*v)/c)}

= 15.9/\sqrt{(1-0.7*0.7)}

= 22.26 years

b)

0.7*c*22.26 years

=15.585 light years  

c)

0.7*c*15.9

=11.13 light years

You might be interested in
An asteroid has acquired a net negative charge of 149 C from being bombarded by the solar wind over the years, and is currently
bearhunter [10]

Answer:

93.125 × 10^(19)

Explanation:

We are told the asteroid has acquired a net negative charge of 149 C.

Thus;

Q = -149 C

charge on electron has a value of:

e = -1.6 × 10^(-19) C

Now, for us to determine the excess electrons on the asteroid, we will just divide the net charge in excess on the asteroid by the charge of a single electron.

Thus;

n = Q/e

n = -149/(-1.6 × 10^(-19))

n = 93.125 × 10^(19)

Thus, it has 93.125 × 10^(19) more electrons than protons

5 0
2 years ago
What kinds of space and matter can light travel through
dem82 [27]

Answer:

Light travels as a wave. But unlike sound waves or water waves, it does not need any matter or material to carry its energy along. This means that light can travel through a vacuum—a completely airless space. (Sound, on the other hand, must travel through a solid, a liquid, or a gas.)

Explanation:

3 0
2 years ago
Read 2 more answers
Which clouds are often associated with thunder and lightning?
ehidna [41]
Your answer is cumulonimbus clouds
3 0
2 years ago
How to find the velocity of an object in a circular path?
Luda [366]
First of all, let's just talk about the speed, and not get wound up
in the velocity. OK ?

If a fly is sitting on the rim of the wheel and the wheel is rotating, then for
each full revolution of the wheel, the fly travels the circumference of the
wheel, which is (2 π) x (radius of the wheel).

In 'N' revolutions, the fly travels (2 N π) x (the radius). and so on.

So if the wheel is going, let's say 71 revs per minute (RPM), a point
on the rim is moving at (2 π times 71) x (the radius) per minute.

Another way to say it:

Speed of a point on the circle = (2 π) x (rotation frequency) x (radius).

The 'rotation frequency' takes care of the unit of time, and the 'radius'
takes care of the unit of length, so the result is a speed.
7 0
3 years ago
Read 2 more answers
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
Other questions:
  • On an essentially frictionless, horizontal ice rink, a skater moving at 5.0 m/s encounters a rough patch that reduces her speed
    10·1 answer
  • How do find the force of buoyancy ​
    12·1 answer
  • 1) Air modeled as an ideal gas enters a well-insulated diffuser operating at steady state at 270 K with a velocity of 180 m/s an
    12·1 answer
  • A bowling ball is on the end of a rope of length 5 meters, the other end of which is attached to a hook in the ceiling. The ball
    5·1 answer
  • 7. Calculate the gravitational potential energy of a 10 kg box on the top shelf of a closet, 2 m above the floor.
    11·1 answer
  • Which vector best represents the net force acting on +3C charge in the diagram?
    10·2 answers
  • Two 2.0-cm-diameter insulating spheres have a 6.60 cm space between them. One sphere is charged to + 76.0 nC , the other to - 30
    10·1 answer
  • Calculate the escape velocity
    6·1 answer
  • g 2. In a laboratory experiment on standing waves a string 3.0 ft long is attached to the prong of an electrically driven tuning
    9·1 answer
  • Un objeto de 5 Kg se mueve a 20 m⁄s, que trabajo habrá que realizar para que su velocidad se duplique:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!