Answer:
1.30
Explanation:
To calculate the critical angle we have ti use the formula:

where theta_c is the critical angle, n1 is the index of refraction of the material where the light is totally reflected, and n2 is the refractive index of the other material.
By taking n_2 and replacing we obtain:

hope this helps!!
Answer:The thymus stores and produces T lymphocytes and also releases hormones which aid in the maturation of the T lymphocytes while the spleen stores and release lymphocytes as well as macrophages which eradicate foreign substances that may harm the body.
Explanation:
Answer:
0.1111 W/m²
Explanation:
If all other parameters are constant, sound intensity is inversely proportional to the square of the distance of the sound. That is,
I ∝ (1/r²)
I = k/r²
Since k can be the constant of proportionality. k = Ir²
We can write this relation as
I₁ × r₁² = I₂ × r₂²
I₁ = 0.25 W/m²
r₁ = 16 m
I₂ = ?
r₂ = 24 m
0.25 × 16² = I₂ × 24²
I₂ = (0.25 × 16²)/24²
I₂ = 0.1111 W/m²
A. Chemical energy is formed when chemical bonds are broken.
Answer:
a) When R is very small R << r, therefore the term R+ r will equal r and the current becomes
b) When R is very large, R >> r, therefore the term R+ r will equal R and the current becomes
Explanation:
<u>Solution :</u>
(a) We want to get the consumed power P when R is very small. The resistor in the circuit consumed the power from this battery. In this case, the current I is leaving the source at the higher-potential terminal and the energy is being delivered to the external circuit where the rate (power) of this transfer is given by equation in the next form
P=∈*I-I^2*r (1)
Where the term ∈*I is the rate at which work is done by the battery and the term I^2*r is the rate at which electrical energy is dissipated in the internal resistance of the battery. The current in the circuit depends on the internal resistance r and we can apply equation to get the current by
I=∈/R+r (2)
When R is very small R << r, therefore the term R+ r will equal r and the current becomes
I= ∈/r
Now let us plug this expression of I into equation (1) to get the consumed power
P=∈*I-I^2*r
=I(∈-I*r)
=0
The consumed power when R is very small is zero
(b) When R is very large, R >> r, therefore the term R+ r will equal R and the current becomes
I=∈/R
The dissipated power due toll could be calculated by using equation.
P=I^2*r (3)
Now let us plug the expression of I into equation (3) to get P
P=I^2*R=(∈/R)^2*R
=∈^2/R