I think it is C. I hope I helped.
Aristotle created and it’s credited as the creator.
<h2>
Answer:50
</h2>
Explanation:
Let
be the airspeed.
Let
be the cross wind speed.
We know that,ground speed is the vector sum of airspeed and cross wind speed and airspeed is perpendicular to cross wind speed.
If
and
are two perpendicular vectors,the resultant vector has the magnitude 
Given,

So,the ground speed is 
Answer:
No, it will not and this has a historical importance. The reason is that transformers work via induction of electrical forces by changes in magnetic fields, so the constat fields produced by dc currents won't work at all
Explanation:
1. The velocity of the spacecraft at position 2 is greater than the velocity of the craft at position 4.
This is due the gravity field of the Earth is used to accelerate the craft. This is true when in a specific point the direction of the movement of the craft is the same direction of the movement of the planet.
In this case the craft will be “catched” by the Earth’s gravitational field, making the craft to enter a circular orbit.
2. At point 1, the direction of the spacecraft changes because of the gravitational force between earth and the spacecraft.
As explained in the first answer, this is the exact point where the trajectory of the spacecraft enters into a circular orbit because of the attraction due gravity of the Earth and therefore changes its direction.
3. Position 3 represents the orbital path of Earth
Being this the orbital path of the Earth and considering the trajectory of the craft, the condition of accelerating the craft is accomplished. If the orbital path of the Earth were the opposite, the effect on the craft would be braking.
Note all of these is related to the gravitational assistance, this consists in a maneuver in which the energy of the gravitational field of a planet or satellite is used to obtain an acceleration or braking of the probe or craft, changing its trajectory.
To learn more about velocity of the spacecraft : brainly.com/question/11900446
#SPJ4