1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
3 years ago
5

In a game the player wins if he rolls a 6 on a number cube. If the number cube is rolled 18 times, then what is a reasonable pre

diction for the number of unsuccessful rolls?
Mathematics
1 answer:
Mamont248 [21]3 years ago
7 0
On a cube, you have 6 faces, therefore you have 1 chance to get 6 and 5 chances not to get 6.

Therefore, the overall probability not to get 6 is 5/6 = 0.8333

If you roll the cube 18 times, the prediction of unsuccessful rolls will be:
18 × 0.8333 = 15

Therefore, you expect to have 15 unsuccessful rolls over 18 total rolls.
You might be interested in
3x−8≤23 OR −4x+26≥6 solve for x
Mama L [17]

Answer:

x  ≤ 31/3

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
What is the equivalent fractions between 4/7and3/5
enot [183]
2/21, 16/28
Multiply by 2,3,4
3 0
3 years ago
ILL GIVE BRAINLIEST<br><br>SHOW ALL WORK
RideAnS [48]

Answer:

9/20 mile^2

Step-by-step explanation:

9/10 x 1/2 = 9/20

3 0
3 years ago
Read 2 more answers
2,17,82,257,626,1297 next one please ?​
In-s [12.5K]

The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule n^4+1. The next number would then be fourth power of 7 plus 1, or 2402.

And the harder way: Denote the <em>n</em>-th term in this sequence by a_n, and denote the given sequence by \{a_n\}_{n\ge1}.

Let b_n denote the <em>n</em>-th term in the sequence of forward differences of \{a_n\}, defined by

b_n=a_{n+1}-a_n

for <em>n</em> ≥ 1. That is, \{b_n\} is the sequence with

b_1=a_2-a_1=17-2=15

b_2=a_3-a_2=82-17=65

b_3=a_4-a_3=175

b_4=a_5-a_4=369

b_5=a_6-a_5=671

and so on.

Next, let c_n denote the <em>n</em>-th term of the differences of \{b_n\}, i.e. for <em>n</em> ≥ 1,

c_n=b_{n+1}-b_n

so that

c_1=b_2-b_1=65-15=50

c_2=110

c_3=194

c_4=302

etc.

Again: let d_n denote the <em>n</em>-th difference of \{c_n\}:

d_n=c_{n+1}-c_n

d_1=c_2-c_1=60

d_2=84

d_3=108

etc.

One more time: let e_n denote the <em>n</em>-th difference of \{d_n\}:

e_n=d_{n+1}-d_n

e_1=d_2-d_1=24

e_2=24

etc.

The fact that these last differences are constant is a good sign that e_n=24 for all <em>n</em> ≥ 1. Assuming this, we would see that \{d_n\} is an arithmetic sequence given recursively by

\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}

and we can easily find the explicit rule:

d_2=d_1+24

d_3=d_2+24=d_1+24\cdot2

d_4=d_3+24=d_1+24\cdot3

and so on, up to

d_n=d_1+24(n-1)

d_n=24n+36

Use the same strategy to find a closed form for \{c_n\}, then for \{b_n\}, and finally \{a_n\}.

\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}

c_2=c_1+24\cdot1+36

c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2

c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3

and so on, up to

c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)

Recall the formula for the sum of consecutive integers:

1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2

\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)

\implies c_n=12n^2+24n+14

\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}

b_2=b_1+12\cdot1^2+24\cdot1+14

b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2

b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3

and so on, up to

b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)

Recall the formula for the sum of squares of consecutive integers:

1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6

\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)

\implies b_n=4n^3+6n^2+4n+1

\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}

a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1

a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2

a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3

\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1

\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4

\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)

\implies a_n=n^4+1

4 0
3 years ago
A photograph 8 cm by 11 cm will be framed. The combined area of the frame and photograph will be 180 cm^2. Algebraically determi
SCORPION-xisa [38]

Answer:

12 cm x 15 cm

Step-by-step explanation:

if the picture frame thickness is x,

then the frame dimension would be (8+2x) cm by (11+2x) cm

area is (8+2x)(11+2x)=180

solve for x, x= 2, -23/2

x is thickness, so should be >0, so x=2

frame dimension:  12 x 16

8 0
3 years ago
Other questions:
  • What is the volume of a cylinder with base radius 2
    11·1 answer
  • The function x-1 over x+5 is never equal to zero <br> True or false?
    15·1 answer
  • A circle has a radius of 4 meters.
    7·1 answer
  • What does it mean if a scatterplot has a positive negative or no association
    8·1 answer
  • simon makes 30 cakes he gives 1/5 of the cakes to sali he gives 10% of the 30 cakes to jane what fraction of the 30 cakes does h
    9·1 answer
  • Can someone show me how to do the following problem...?<br><br> 5x^2-5x-30=0
    14·2 answers
  • What is the surface area of a rectangular prism that has a height of 5 cm, a width of 10 cm, and a depth of 4 cm?
    13·2 answers
  • Write −0.258 as a fraction in simplest form. <br> Please Help!
    12·2 answers
  • Can someone tell me how to graph this ​
    12·1 answer
  • The more experiments that are performed, the closer the experimental probability gets to the theoretical probability: true or fa
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!