in right angle traingle two angle are equal
so.x=y
in triangle
x+y+90=180(sum of interior angle of triangle)
2x=180-90
x=90/3=45°
<u>Answer-</u>
<em>The </em><em>exponential model</em><em> best fits the data set.</em>
<u>Solution-</u>
x = input variable = number of practice throws
y = output variable = number of free throws
Using Excel, Linear, Quadratic and Exponential regression model were generated.
The best fit equation and co-efficient of determination R² are as follows,
<u>Linear Regression</u>

<u>Quadratic Regression</u>

<u>Exponential Regression</u>

The value of co-efficient of determination R² ranges from 0 to 1, the more closer its value to 1 the better the regression model is.
Now,

Therefore, the Exponential Regression model must be followed.
Answer:
32?
Step-by-step explanation:
thats what i got...
When given a value of the variable, we replace each instance of the variable in the problem with that number. In this case, the expression becomes:

After this, we merely need to simplify the answer.


Simplifying 12/2 gives us the answer 6.
Answer:
Option A
Step-by-step explanation:
Given expression:
<u>Option A</u>
⇒ (x - 4)(3x + 2)
⇒ (x × 3x) + (2 × x) + (-4 × 3x) + (-4 × 2)
⇒ (3x²) + (2x) + (-12x) + (-8)
⇒ 3x² + 2x - 12x - 8
⇒ 3x² - 10x - 8
3x² - 10x - 8 = 3x² - 10x - 8 (Yes!)
<u>Option B</u>
⇒ (3x - 4)(x - 2)
⇒ (3x × x) + (3x × -2) + (-4 × x) + (-4 × -2)
⇒ (3x²) + (-6x) + (-4x) + (8)
⇒ 3x² - 6x - 4x + (8)
⇒ 3x² - 10x + 8
3x² - 10x - 8 = 3x² - 10x + 8 (No!)
<u>Option C</u>
⇒ (3x - 4)(x + 2)
⇒ (3x × x) + (3x × 2) + (-4 × x) + (-4 × 2)
⇒ (3x²) + (6x) + (-4x) + (-8)
⇒ 3x² + 6x - 4x - 8
⇒ 3x² + 2x - 8
3x² - 10x - 8 = 3x² + 2x - 8 (No!)
<u>Option D</u>
⇒ (3x - 2)(x - 4)
⇒ (3x × x) + (3x × -4) + (-2 × x) + (-2 × -4)
⇒ (3x²) + (-12x) + (-2x) + (8)
⇒ 3x² - 12x - 2x + 8
⇒ 3x² - 14x + 8
3x² - 10x - 8 = 3x² - 14x + 8 (No!)
Since the expression of option A has the same value as the given expression, option A is correct.