From the answers provided, I believe the possible answer would be the last option, silicon, oxygen, and one or more metals. Here's my reasoning: the most abundant mineral group found in the Earth's crust is the silicate group. The silicate materials contain both oxygen and silicon. Silicates are the most common minerals in the rock-formation process, and it has, in fact, been estimated that they make up 75 to 90 percent of the Earth's crust. From this piece of evidence, I can guess that the answer will possibly be D, silicon, oxygen, and one or more metals.
It should also be noted that the additional elements that combine with the silicon-oxygen tetrahedron are involved with the other elements commonly found in the Earth's crust and mantle. They are aluminum, calcium, iron, magnesium, potassium and sodium.
a renewable energy source from living or recently living plant and animal materials which can be used as fuel. An example of biomass is plant material that produces electricity with steam. An example of biomass is animal fossil fuel.
Answer:

Explanation:
Given two mass on an incline code
and
and an angle of inclination
.
. Assume that
is the weight being pulled up and
the hanging weight.
-The equations of motion from Newton's Second Law are:
where a is the acceleration.
#Substituting for
(tension) gives:

#and solving for 
which is the system's acceleration.
Answer:
No, there won't be a collision.
Explanation:
We will use the constant acceleration formulas to calculate,
v = u + a*t
0 = 25 + (-0.1)*t
t = 250 seconds (the time taken for the passenger train to stop)
v^2 = u^2 + 2*a*s
0 = (25)^2 + 2*(-0.1)*s
s = 3125 m (distance traveled by passenger train to stop)
If the distance traveled by freight train in 250 seconds is less than (3125-200=2925 m) than the collision will occur
Speed*time = distance
Distance = (15)*(250)
Distance = 3750 m
As the distance is way more, there won’t be a collision