Answer:
explanation of this effect is the photoelectric effect
Explanation:
Let's describe the process, when light of large wavelength falls, this implies a small energy, according to Planck's equation
E = h f =
the energy of the photons is not enough to carry out an electronic transition between two states of the material, when we decrease the wavelength (the energy of the photons increases), the point is reached where the energy of the beam is equal to some energy of a transition, by which the electrons are promoted and since we can see a certain charge, as the atoms are neutral, some electrons must be removed from the material, this is represented in the macroscopic case as the work function of the material, consequently a unbalanced load that is what we can measure.
When we increase the lightning intensity, what we do is that we increase the number of photons and if each photon can remove an electron, by removing the electrons the difference between it and the positive charge (fixed in the nuclei) increases.
We can analyze the interaction of the photon and the electron as a particular collision.
The explanation of this effect was made by Einstein in his explained of the photoelectric effect
Answer:
linear charge density = -9.495 ×
C/m
Explanation:
given data
revolutions per second = 1.80 ×
radius = 1.20 cm
solution
we know that when proton to revolve around charge wire then centripetal force is require to be in orbit of radius around provide by electric force
so
- q × E = m × w² × r ..................1
- 9 ×
×
q = m × w² × r ............2
and w =
w =
w = 1.80 ×
×
w = 11304000 rad/s
so here from equation 2
- 9 ×
×
1.80 ×
= 1.672 ×
× 11304000² × 0.0120
linear charge density = -9.495 ×
C/m
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases
Assuming the accleration applied was constant, we have



Then the force applied to the ball is given by

