Answer:
56.86153 N
Explanation:
t =Time taken
F = Force
Power

Work done

The magnitude of the force that is exerted on the handle is 56.86153 N
Continuous. Discrete values are values like 1, 2, 3, 4, etc. - they're values that are <em>distinct</em>, and typically there's some idea of a <em>next </em>and a <em>previous </em>value. When we're counting whole numbers, there's a definitive answer to which number comes after, and which number comes before. With continuous values, there's no real "next" or "last" value.
Motion is measured with <em>continuous </em>values; a train might move 300 yards in 1 minute, but we can look at smaller and smaller chunks of time to keep getting shorter and shorter distances. There is no <em />"next" distance the train moves after those 300 yards - it just doesn't make sense for there to be.
It's also measured <em>quantitatively</em>, not <em>qualitatively</em>. This just means that we can use numerical values to measure it, rather than other descriptors like color, smell, or taste.
This problem is about the rate of the current. It's important to know that refers to the quotient between the electric charge and the time, that's the current rate.

Where Q = 2.0×10^−4 C and t = 2.0×10^−6 s. Let's use these values to find I.

<em>As you can observe above, the division of the powers was solved by just subtracting their exponents.</em>
<em />
<h2>Therefore, the rate of the current flow is 1.0×10^2 A.</h2>