1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
borishaifa [10]
4 years ago
8

What is the area enclosed by the cycle area of the Carnot cycle illustrating on a T-s diagram?

Engineering
1 answer:
gayaneshka [121]4 years ago
4 0

Answer:

Heat

Explanation:

Carnot cycle:

  Carnot cycle is the ideal cycle for all working engine .Carnot cycle all processes are reversible.It have fore process Out of two are constant temperature process and other two are isentropic process(reversible adiabatic).

We know that area under T-s diagram represents the heat.

So Q=\int Tds

From cycle we can say that

q_{in}=T_2\left ( s_2-s_1 \right )

q_{out}=T_1\left ( s_2-s_1 \right )

You might be interested in
Consider a person standing in a breezy room at 20°C. Determine the total rate of heat transfer from the person if the exposed su
Ghella [55]

Answer:

dfggf

Explanation:

3 0
3 years ago
Write definitions for the following two functions:______
lawyer [7]

Answer:

<em>Written in Python</em>

def SumN(n):

     total = 0

     for i in range(1,n+1):

           total = total + i

     print("Total: ",total)

def SumNCubes(n):

     total = 0

     for i in range(1,n+1):

           total = total + i**3

     print("Cube: ",total)

n = int(input("User Input: "))

if n > 0:

     SumN(n)

     SumNCubes(n)

Explanation:

The SumN function is defined here

def SumN(n):

This line initializes the total to 0

     total = 0

The following iteration compute the required sum

<em>      for i in range(1,n+1): </em>

<em>            total = total + i </em>

This line outputs the calculated sum

     print("Total: ",total)

The SumNCubes function is defined here

def SumNCubes(n):

This line initializes the total to 0

     total = 0

The following iteration compute the required sum of cubes

<em>      for i in range(1,n+1): </em>

<em>            total = total + i**3 </em>

This line outputs the calculated sum of cubes

     print("Cube: ",total)

The main starts here; The first line prompts user for input

n = int(input("User Input: "))

The next line checks if input is greater than 0; If yes, the two defined functions are called

if n > 0:

     SumN(n)

     SumNCubes(n)

6 0
3 years ago
Write cout statements with stream manipulators that perform the following:
Semenov [28]

Answer:

A)cout<<setw(9)<<fixed<<setprecision(2)<<34.789;

B)cout<<setw(5)<<fixed<<setprecision(3)<<7.0;

C)cout<<fixed<<5.789E12;

D)cout<<left<<setw(7)<<67;

Explanation:

Stream Manipulators are functions specifically designed to be used in conjunction with the insertion (<<) and extraction (>>) operators on stream objects in C++ programming while the 'cout' statement is used to display the output of a C++to the standard output device.

setw:  used to specify the minimum number of character positions on the output field

setprecision: Sets the decimal precision to be used to format floating-point values on output operations.

fixed:  is used to set the floatfield format flag for the specified str stream.

left: adjust output to the left.

A) To display the number 34.789 in a field of eight spaces with two decimal places of precision. cout<<setw(9)<<fixed<<setprecision(2)<<34.789;

B) To display the number 7.0 in a field of six spaces with three decimal places of precision. cout<<setw(5)<<fixed<<setprecision(3)<<7.0;

C) To print out the number 5.789e+12 in fixed-point notation.  cout<<fixed<<5.789E12;

(D) To display the number 67 left-justified in a field of six spaces. cout<<left<<setw(7)<<67;

7 0
4 years ago
The Transportation and Logistics career cluster serves
alukav5142 [94]

Answer:

C - airplane and grocery store

Explanation:

i hope this helps

8 0
3 years ago
Pendulum impacting an inclined surface of a block attached to a spring-Dependent multi-part problem assign all parts NOTE: This
Art [367]

Answer:

vA = -2.55 m/s

vB = 0.947 m/s

Explanation:

Given:-

- The initial angle of rope, α = 30°

- The angle of rope just before impact or wedge angle, θ = 20°

- The weight of sphere, Ws = 1-lb

- The initial position velocity, vi = 4 ft/s

- The coefficient of restitution, e = 0.7

- The weight of the wedge, Ww = 2-lb

- The spring constant, k = 1.8 lb/in

- The length of rope, L = 2.6 ft

Find:-

 Determine the velocities of A and B immediately after the impact.

Solution:-

- We can first consider the ball ( acting as a pendulum ) to be isolated for study.

- There are no unbalanced fictitious forces acting on the sphere ball. Hence, we can reasonably assume that the energy is conserved.

- According to the principle of conservation for the initial point and the point just before impact.

Let,

              vA : The speed of sphere ball before impact

               

                  Change in kinetic energy = Change in potential energy

                  ΔK.E = ΔE.P

                  0.5*ms* ( uA^2 - vi^2 ) = ms*g*L*( cos ( θ ) - cos ( α ) )

                  uA^2 = 2*g*L*( cos ( θ ) - cos ( α ) ) + vi^2

                  uA = √ [ 2*32*2.6*( cos ( 20 ) - cos ( 30 ) ) + 4^2 ] = √28.25822

                  uA = 5.316 ft/s

- The coefficient of restitution (e) can be thought of as a measure of the extent to which mechanical energy is conserved when an object bounces off a surface:

                 e^2 = ( K.E_after impact / K.E_before impact )

- The respective Kinetic energies are:

               

                K.E_after impact = K.E_sphere + K.E_block

                                             = 0.5*ms*vA^2 + 0.5*mb*vB^2

                K.E_before impact = K.E = Ws*L*( cos ( θ ) - cos ( α ) )

                                                         = 1*2.6*( cos ( 20 ) - cos ( 30 ) )

                                                         = 0.1915 J

                32*2*0.1915*0.7^2 = Ws*vA^2 + Wb*vB^2  

                6.00544 = vA^2 + 2*vB^2  ... Eq1

- From conservation of linear momentum we have:

                vB = e*( uA - uB )*cos ( 20 ) + vA

                vB = 0.7*( 5.316 - 0 )*cos ( 20)   + vA

                vB = 3.49678 + vA  .... Eq 2

- Solve two equation simultaneously:

               

               6.00544 = vA^2 + 2*(3.49678 + vA)^2

               6.00544 = 3vA^2 + 13.98*vA + 24.455

               3vA^2 + 14.8848*vA + 18.4495 = 0

               vA = -2.55 m/s

               vB = 0.947 m/s

                                 

5 0
4 years ago
Other questions:
  • An engineer devises a scheme for extracting some power from waste process steam. The engineer claims that the steam enters the d
    15·1 answer
  • Design roller chain drive. Specify the chain size, the sizes and number of teeth in the sprockets, the number of chain pitches,
    14·1 answer
  • I need help on Problem 2.11
    12·1 answer
  • The combustion products from burning pentane. CSH I2, with pure oxygen in a stone- .stoichiometric ratio exit at 2400 K, 100 kPa
    6·1 answer
  • Which option distinguishes what can be inferred from the following scenario?
    14·1 answer
  • Which of these parts of a cell phone is least likely to be found on the phone's circult board?
    5·1 answer
  • How does the turbo on a car work?
    5·2 answers
  • How can you throw a ball as hard as you can and have it come back to you, even if it doesn't
    15·1 answer
  • The demand for Manufacturing jobs is O decreasing O increasing O slowly changing. O remaining constant.​
    6·2 answers
  • X − 3y − 8z = −10 2x + 5y + 6z = 13 3x + 2y − 2z = 3
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!