I think the answer is B. 10D
Explanation:
perturbateur ( le temps, le lieu, les personnages[description], la victime, l'enqueteur )
les peripeties
le denouement
Answer:
4.5kg/min
Explanation:
Given parameters

if we take
The mass flow rate of the second stream = 
The mass flow rate of mixed exit stream = 
Now from mass conservation


The temperature of the mixed exit stream given as

Therefore the mass flow rate of second stream will be 4.5 kg/min.
Answer:
293 kg
Explanation:
Let's say the tension in each cable is Tb, Tc, and Td.
First, find the length of cable AD:
r = √(2² + 2² + 1²)
r = 3
Using similar triangles:
Tdx = 2/3 Td
Tdy = 2/3 Td
Tdz = 1/3 Td
Sum of the forces in the x direction:
∑F = ma
Tb − 2/3 Td = 0
Td = 3/2 Tb
Sum of the forces in the y direction:
∑F = ma
2/3 Td − Tc = 0
Td = 3/2 Tc
Sum of the forces in the z direction:
∑F = ma
1/3 Td − mg = 0
Td = 3mg
From the first two equations, we know Td is greater than Tb or Tc. So we need to set Td to 8.6 kN, or 8600 N.
8600 N = 3mg
m = 8600 N / (3 × 9.8 m/s²)
m ≈ 292.5 kg
Rounded to three significant figures, the maximum mass of the crate is 293 kg.
Closest one is A. “The largest Vehicle”