Answer:
note:
<u><em>solution is attached due to error in mathematical equation. please find the attachment</em></u>
Answer:
1) the final temperature is T2 = 876.76°C
2) the final volume is V2 = 24.14 cm³
Explanation:
We can model the gas behaviour as an ideal gas, then
P*V=n*R*T
since the gas is rapidly compressed and the thermal conductivity of a gas is low a we can assume that there is an insignificant heat transfer in that time, therefore for adiabatic conditions:
P*V^k = constant = C, k= adiabatic coefficient for air = 1.4
then the work will be
W = ∫ P dV = ∫ C*V^(-k) dV = C*[((V2^(-k+1)-V1^(-k+1)]/( -k +1) = (P2*V2 - P1*V1)/(1-k)= nR(T2-T1)/(1-k) = (P1*V1/T1)*(T2-T1)/(1-k)
W = (P1*V1/T1)*(T2-T1)/(1-k)
T2 = (1-k)W* T1/(P1*V1) +T1
replacing values (W=-450 J since it is the work done by the gas to the piston)
T2 = (1-1.4)*(-450J) *308K/(101325 Pa*650*10^-6 m³) + 308 K= 1149.76 K = 876.76°C
the final volume is
TV^(k-1)= constant
therefore
T2/T1= (V2/V1)^(1-k)
V2 = V1* (T2/T1)^(1/(1-k)) = 650 cm³ * (1149.76K/308K)^(1/(1-1.4)) = 24.14 cm³
Answer:
The option that is best described as a way engineers can test and investigate how things should be under certain circumstances is;
Explanation:
Modeling is a tool an engineer can use for the physical representation of a system that will facilitate the definition, testing and analysis, communication, data generation, data verification and data validation of given concepts
Models also aid in setting specifications, supporting designs, and verification of a given system
Therefore, with modeling engineers can investigate the behavior of systems under given environmental conditions.
Answer:
see pictures
Explanation:
In the pictures you can see the different processes.