Answer:
In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing).
Explanation:
please mark brainliest
analyzing building materials???????????? but i can try i think it is analyzing the materials of the building
Nothing flammable of explosive type of material is around
Answer:
Explanation:
Sum of the side slope = 2 + 1 = 3
Length of first slope = 2/3 X 3.6 = 2 X 1.2 = 2.4m
Lenght of second slope = 1/3 X 3.6 = 1.2m
Area of the trapezoidal channel = (2.4 + 1.2)/2 X 3.6 = 1.8 X 3.6 = 6.48m²
Alternate dept = 50m³/6.48m²= 7.716m
The smallest area of each cable if the stress is not to exceed 90MPa in bronze is 43.6 mm² and 120MPa in steel is 32.7 mm².
<h3>What is normal stress?</h3>
If the direction of deformation force is perpendicular to the cross-sectional area of the body, the stress is called normal stress. Changes in wire length and body volume will be normal.
σ = P/A
Where, σ = Normal stress
P = Pressure
A = Area
1 Kg = 9.81 N
800 kg = 7848 N
Since the rod is half bronze and half steel
800 kg = 7848/2
= 3924 N
Pₙ = Fₙ = 3924 N [n = Bronze]
Pₓ = 3924 N [x = steel]
Given,
σₙ = 90MPa
σₓ = 120MPa
Aₙ = ?
Aₓ = ?
Aₙ = Pₙ/σₙ
Aₙ = 3924/90
Aₙ = 43.6 mm²
Aₓ = Pₓ/σₓ
Aₓ = 3924/120
Aₓ = 32.7 mm²
To know more about normal stress, visit:
brainly.com/question/28012990
#SPJ9