Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J
Explanation:
The given cell reaction is as follows.

Hence, reactions taking place at the cathode and anode are as follows.
At anode ; Oxidation-half reaction :
...... (1)
At cathode; Reduction-half reaction :
....... (2)
Hence, balance the half reactions by multiplying equation (1) by 2 and equation (2) by 3.
Therefore, net cell reaction is as follows.

Net reaction: 
Thus, we can conclude that the overall cell reaction is as follows.

The answer is number 1 - energy is emitted
Energy is released when an atom in an excited state returns to the ground state.