The molar mass of a, b and c at STP is calculated as below
At STP T is always= 273 Kelvin and ,P= 1.0 atm
by use of ideal gas equation that is PV =nRT
n(number of moles) = mass/molar mass therefore replace n in the ideal gas equation
that is Pv = (mass/molar mass)RT
multiply both side by molar mass and then divide by Pv to make molar mass the subject of the formula
that is molar mass = (mass x RT)/ PV
density is always = mass/volume
therefore by replacing mass/volume in the equation by density the equation
molar mass=( density xRT)/P where R = 0.082 L.atm/mol.K
the molar mass for a
= (1.25 g/l x0.082 L.atm/mol.k x273k)/1.0atm = 28g/mol
the molar mass of b
=(2.86g/l x0.082L.atm/mol.k x273 k) /1.0 atm = 64 g/mol
the molar mass of c
=0.714g/l x0.082 L.atm/mol.K x273 K) 1.0atm= 16 g/mol
therefore the
gas a is nitrogen N2 since 14 x2= 28 g/mol
gas b =SO2 since 32 +(16x2)= 64g/mol
gas c = methaneCH4 since 12+(1x4) = 16 g/mol
Answer:
The protons inside an atom's nucleus help bind the nucleus together. They also attract the negatively charged electrons, and keep them in orbit around the nucleus. The number of protons in an atom's nucleus determines which chemical element it is.
The Chemica formula of the product is Na2S which is called sodium sulfide. remember that sodium is a metal and all compounds containing a metal are named with the stock system.
Answer:
0.482 ×10²³ molecules
Explanation:
Given data:
Volume of gas = 2.5 L
Temperature of gas = 50°C (50+273 = 323 k)
Pressure of gas = 650 mmHg (650/760 =0.86 atm)
Molecules of N₂= ?
Solution:
PV= nRT
n = PV/RT
n = 0.86 atm × 2.5 L /0.0821 atm. mol⁻¹. k⁻¹. L × 323 k
n = 2.15 atm. L /26.52 atm. mol⁻¹.L
n = 0.08 mol
Number of moles of N₂ are 0.08 mol.
Number of molecules:
one mole = 6.022 ×10²³ molecules
0.08×6.022 ×10²³ = 0.482 ×10²³ molecules
Answer:
Look for extra things to do, small details, until you find a big enough one to go off that to continue
Explanation:
n/a