Answer:
5 I think will be none of the above and 6 could be all of the above
Hello! You can call me Emac or Eric.
I understand your problem, that question is pretty hard. But I found some information that I think you should read. This can get your problem done quickly.
Please hit that thank you button if that helped, I don’t want thank you’s I just want to know that this helped.
Please reply if this doesn’t help, I will try my best to gather more information or a answer.
Here is some good information that could help you out a lot!
Let’s begin by exploring some techniques astronomers use to study how galaxies are born and change over cosmic time. Suppose you wanted to understand how adult humans got to be the way they are. If you were very dedicated and patient, you could actually observe a sample of babies from birth, following them through childhood, adolescence, and into adulthood, and making basic measurements such as their heights, weights, and the proportional sizes of different parts of their bodies to understand how they change over time.
Unfortunately, we have no such possibility for understanding how galaxies grow and change over time: in a human lifetime—or even over the entire history of human civilization—individual galaxies change hardly at all. We need other tools than just patiently observing single galaxies in order to study and understand those long, slow changes.
We do, however, have one remarkable asset in studying galactic evolution. As we have seen, the universe itself is a kind of time machine that permits us to observe remote galaxies as they were long ago. For the closest galaxies, like the Andromeda galaxy, the time the light takes to reach us is on the order of a few hundred thousand to a few million years. Typically not much changes over times that short—individual stars in the galaxy may be born or die, but the overall structure and appearance of the galaxy will remain the same. But we have observed galaxies so far away that we are seeing them as they were when the light left them more than 10 billion years ago.
That is some information, I do have more if you need some! Thanks!
Have a great rest of your day/night! :)
Emacathy,
Brainly Team.
To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 
Answer:
(A) power = 0.208 kW = 208 watts
(B) energy = 6.6 x 10^{9} joules
Explanation:
energy consumed per day = 5 kWh
(a) find the power consumed in a day
1 day = 24 hours
power = \frac{energy}{time}
power = \frac{5}{24}
power = 0.208 kW = 208 watts
(b) find the energy consumed in a year
assuming it is not a leap year and number of days = 365 days
1 year = 365 x 24 x 60 x 60 = 31,536,000 seconds
energy = power x time
energy = 208 x 31,536,000
energy = 6.6 x 10^{9} joules