Answer:
C .96 meters
Explanation: i just had this question
(A) P(v) = 0.135v
(B) P(h) = 0.234v
<u>Explanation:</u>
Given-
Mass of the ball, m = 0.27kg
Force, F = 125N
angle of projection, θ = 30°
Let v be the velocity of the ball.
A) vertical component of the momentum of the volleyball
We know,
P(vertical) = mvsinθ
P(V) = 0.27 X v X sin 30°
P(V) = 0.27 X v X 0.5
P(V) = 0.135v
B) horizontal component of the momentum of the volleyball
We know,
P(Horizontal) = mvcosθ
P(h) = 0.27 X v X cos 30°
P(h) = 0.27 X v X 0.866
P(h) = 0.234v
A theorem can be proven (from axioms or prior theorems), using logic.
A hypothesis can be supported by evidence. The more evidence in support of the hypothesis, the more likely the hypothesis is to be correct. However, you’re always at the mercy of contrary evidence appearing in the future, to reduce the likelihood or even invalidate a hypothesis.
A (mathematical) proof suffers no such vulnerability to future evidence, as long as you hold the axioms of the theory to be true, and as long as there was no flaw in the construction of the proof.
Answer:
<em>B. 68.6m</em>
Explanation:
<u>Free Fall Motion
</u>
When a body is left to move in the air with no friction, the motion is ruled only by the force of gravity. The vertical distance a body travels in the air after a time t is
.

We know the egg takes 3.74 seconds to reach the ground. The height it was launched from is


The closest correct option is
B. 68.6m
Answer:
Explained below
Explanation:
To explain this, let's consider a tennis ball being launched from the top of a very high building.
Now, if the tennis ball is launched horizontally without any upward angle but with an initial velocity of 10 m/s. In this motion, If there is no gravity, the tennis ball would continue in motion at that same speed of 10 m/s in the horizontal direction. However, in reality, gravity causes the tennis ball to accelerate downwards at a rate of 9.8 m/s for every second. This implies that the vertical velocity component is changing at the rate of 9.8 m/s every second.
Thus, after 1 second, horizontal velocity component will remain 10 m/s and vertical component will be 9.8 m/s × 1 = 9.8 m/s downwards.
Also, after 2 seconds, the vertical velocity component will remain 10 m/s, however the vertical component will now be 9.8 × 2 = 19.6 m/s downwards.
Same procedure is repeated as t increases by 1 second.