Answer:
C. Why you must push harder to move a car farther.
Explanation:
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Hence, Newton's 2nd Law explains why you must push harder to move a car farther because of its mass. Thus, it is important to increase the force that the engine provides and decrease the mass of the car.
Answer:
<em>The 6000 lines per cm grating, will produces the greater dispersion .</em>
Explanation:
A diffraction grating is an optical component with a periodic (usually one that has ridges or rulings on their surface rather than dark lines) structure that splits and diffracts light into several beams travelling in different directions.
The directions of the light beam produced from a diffraction grating depend on the spacing of the grating, and also on the wavelength of the light.
For a plane diffraction grating, the angular positions of principle maxima is given by
(a + b) sin ∅n = nλ
where
a+b is the distance between two consecutive slits
n is the order of principal maxima
λ is the wavelength of the light
From the equation, we can see that without sin ∅ exceeding 1, increasing the number of lines per cm will lead to a decrease between the spacing between consecutive slits.
In this case, light of the same wavelength is used. If λ and n is held constant, then we'll see that reducing the distance between two consecutive slits (a + b) will lead to an increase in the angle of dispersion sin ∅. So long as the limit of sin ∅ not greater that one is maintained.
Answer:
2.521 (A); 14.0924 (V)
Explanation:
more info in the attachment, the answers are marked with red colour.
Answer:
c. 0.80
Explanation:
they will choose the path that has not resistance
They can either cancel each other or add up to a resultant force with a certain direction and modulus.
Newton's second law states that F=m*a, where F is the resultant force, ie ΣF.