Answer:
1/2jdjdjjdjdjdhdhdhdhdhhdhdhdhdhd
<span>Diagonals of a rhombus are perpendicular and bisect each other. This means this rhombus is composed of four right triangles with legs of length 6 cm and 8 cm, with their hypotenuses forming the perimeter of the rhombus. The Pythagorean theorem a^2+ b^2 = c^2 can be used to find the length of the hypotenuse. 6^2+8^2 = 36+64 = 100. The square root of 100 is 10, so the length of a side of the rhombus is 10 cm.</span>
Answer:
-1/24
Step-by-step explanation:
-7/8 - (-5/6)
Subtracting a negative is like adding
-7/8 + 5/6
Get a common denominator
-7/8 * 6/6 + 5/6 *8/8
-42/48 + 40/46
-2/48
-1/24
Answer:
It should be A
Step-by-step explanation:
I hope this helps
Subtract 1111 from both sides
5{e}^{{4}^{x}}=22-115e4x=22−11
Simplify 22-1122−11 to 1111
5{e}^{{4}^{x}}=115e4x=11
Divide both sides by 55
{e}^{{4}^{x}}=\frac{11}{5}e4x=511
Use Definition of Natural Logarithm: {e}^{y}=xey=x if and only if \ln{x}=ylnx=y
{4}^{x}=\ln{\frac{11}{5}}4x=ln511
: {b}^{a}=xba=x if and only if log_b(x)=alogb(x)=a
x=\log_{4}{\ln{\frac{11}{5}}}x=log4ln511
Use Change of Base Rule: \log_{b}{x}=\frac{\log_{a}{x}}{\log_{a}{b}}logbx=logablogax
x=\frac{\log{\ln{\frac{11}{5}}}}{\log{4}}x=log4logln511
Use Power Rule: \log_{b}{{x}^{c}}=c\log_{b}{x}logbxc=clogbx
\log{4}log4 -> \log{{2}^{2}}log22 -> 2\log{2}2log2
x=\frac{\log{\ln{\frac{11}{5}}}}{2\log{2}}x=2log2
Answer= −0.171