Destroying the wetlands will reduce the bay's water quality and vegetation will not grow effectively near bay as a result of which ecosystem will also destroy.
<h3>What is ecosystem?</h3>
All species and the physical environment with which they interact make up an ecosystem.
- Nutrient cycles and energy flows bind these biotic and abiotic components together.
- Photosynthesis brings energy into the system, which is absorbed into plant tissue.
As it is already mentioned that, water of the wetlands was carry nutrients which in turn was taken up by plants and vegetation, and if it will destroyed near a bay then the vegetation of that place will destroy as they will not get proper nutrients, which in turn also affects the ecosystem.
Hence destroying the wetlands will reduce the bay's water quality and vegetation will not grow effectively near bay as a result of which ecosystem will also destroy.
To know more about ecosystem, visit the below link:
brainly.com/question/2189549
#SPJ1
Answer:
the stem, but if its more specific xylem cells
Atomic number and the number of protons are the same...
Neutrons = Mass number - number of protons
Electrons are same # unless there is a charge
The whole number you see on the periodic table is the atomic number of the element which is also same as the number of protons
1) carbon - 14 ; Mass number = 14 , Protons = 6 , Neutrons = 14 - 6 = 8
Electrons = 6
2) Lead - 208 ; Mass # = 208 , Protons = 82 , Neutrons = 208 - 82 = 126
Electrons = 82
3) Uranium - 239 ; Mass # = 239 , Protons = 92,Neutrons = 239 - 92 = 147
Electrons = 92
4) Uranium - 238 ; Mass # = 238 , Protons = 92 , Neutrons = 238 - 92 = 146
Electrons = 92
5) Tin - 118 ; Mass # = 118 , Protons = 50 , Neutrons = 118 - 50 = 68
Electrons = 50
<span>Jet streams are the major means of transport for weather systems. A jet stream is an area of strong winds ranging from 120-250 mph that can be thousands of miles long, a couple of hundred miles across and a few miles deep. Jet streams usually sit at the boundary between the troposphere and the stratosphere at a level called the tropopause. This means most jet streams are about 6-9 miles off the ground. Figure A is a cross section of a jet stream.
</span>
The dynamics of jet streams are actually quite complicated, so this is a very simplified version of what creates jets. The basic idea that drives jet formation is this: a strong horizontal temperature contrast, like the one between the North Pole and the equator, causes a dramatic increase in horizontal wind speed with height. Therefore, a jet stream forms directly over the center of the strongest area of horizontal temperature difference, or the front. As a general rule, a strong front has a jet stream directly above it that is parallel to it. Figure B shows that jet streams are positioned just below the tropopause (the red lines) and above the fronts, in this case, the boundaries between two circulation cells carrying air of different temperatures.
Fluorine in compounds is always assigned an oxidation number of -1