b) It is based on atomic properties as alkali metals requires 7 more electrons to complete their outer orbit. And they try to give those electrons to other elements to obtain noble gas configuration.
Noble gases are the gases which do not react easily with anything. They are also called as Inert gases, and belongs to group 18 of the periodic table.
Alkali metals are the substances which are found in Group I of a periodic table. Mostly the elements which are present are:
Properties of alkali metals are: Soft, shiny reactive metals. They are soft enough to cut with knife. Metals react with water and air quickly and gets tarnish, so pure metals are stored in container by dipping them in oil to prevent oxidation.
To know more about Alkali metals, refer to this link:
brainly.com/question/18153051
#SPJ4
Explanation:
biotic factors are the things which have life like animals and plants
And Abiotic factors are the things which don't have life like air,stone and river
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.
Plants most commonly break large rock into smaller pieces by having the plant root grow into cracks in rocks. The plant root from below the surface grows and that's how they break rocks into pieces.
Explanation:
potential energy is the correct answer