<u>Answer:</u> The molar solubility of
is 
<u>Explanation:</u>
Solubility is defined as the maximum amount of solute that can be dissolved in a solvent at equilibrium.
Solubility product is defined as the product of concentration of ions present in a solution each raised to the power its stoichiometric ratio.
The balanced equilibrium reaction for the ionization of calcium fluoride follows:

s 2s
The expression for solubility constant for this reaction will be:
![K_{sp}=[Pb^{2+}][I^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BPb%5E%7B2%2B%7D%5D%5BI%5E-%5D%5E2)
We are given:

Putting values in above equation, we get:

Hence, the molar solubility of
is 
Answer:
Yes, they are isotopes.
Explanation:
Isotopes are atoms with the same atomic number Z and a different mass number (A). That is, they differ in the number of neutrons (eg carbon 12, has 6 protons, 6 electrons, and 6 neutrons, carbon 13, 7 neutrons, and carbon 14 8 neutrons).
Answer:
Explanation: Acids give off H+ (Hydrogen) ions in water; bases give off OH- (Hydroxide) ions in water. Acids generally taste sour due to the sour H+ ion; bases taste bitter due to the OH- ion; but they may have other tastes depending on the other part of the molecule. ... Acids have a pH less than 7 ; Bases have a pH greater than 7.
Description:
<span>"0.0400 mol of H2O2 decomposed into 0.0400 mol of H2O and 0.0200 mol of O2."
This means that a certain amount of H2O2 (0.0400 mol) decomposed or was broken down into two components, 0.04 mol of H2O and 0.02 mol of O2. To examine the system, we need a balanced equation:
H2O2 ---> H2O + 0.5O2
The final concentrations of the system indicates that the system is in equilibrium. </span>
The answer to your question is A I think