Answer:
a)= 0.025602u
b) = 23.848MeV
c) N = 1.546 × 10¹³
Explanation:
The reaction is
²₁H + ²₁H ⇄ ⁴₂H + Q
a) The mass difference is
Δm = 2m(²₁H) - m (⁴₂H)
= 2(2.014102u) - 4.002602u
= 0.025602u
b) Use the Einstein mass energy relation ship
The enegy release is the mass difference times 931.5MeV/U
E = (0.025602) (931.5)
= 23.848MeV
c)
the number of reaction need per seconds is
N = Q/E
= 59W/ 23.848MeV

N = 1.546 × 10¹³
Answer: experiment data is the things you do in the experiment and the result is the answer
Answer:
doppler shift's formula for source and receiver moving away from each other:
<em>λ'=λ°√(1+β/1-β)</em>
Explanation:
acceleration of spaceship=α=29.4m/s²
wavelength of sodium lamp=λ°=589nm
as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm
using doppler shift's formula:
<em>λ'=λ°√(1+β/1-β)</em>
putting the values:
700nm=589nm√(1+β/1-β)
after simplifying:
<em>β=0.17</em>
by this we can say that speed at that time is: v=0.17c
to calculate velocity at an acceleration of a=29.4m/s²
we suppose that spaceship started from rest so,
<em>v=v₀+at</em>
where v₀=0
so<em> v=at</em>
as we want to calculate t so:-
<em>t=v/a</em> v=0.17c ,c=3x10⁸ ,a=29.4m/s²
putting values:
=0.17(3x10⁸m/s)/29.4m/s²
<em>t=1.73x10⁶</em>
Answer:
F = 352 N
Explanation:
we know that:
F*t = ΔP
so:
F*t = M
-M
where F is the force excerted by the wall, t is the time, M the mass of the ball,
the final velocity of the ball and
the initial velocity.
Replacing values, we get:
F(0.05s) = (0.8 kg)(11m/s)-(0.8 kg)(-11m/s)
solving for F:
F = 352 N