So the given value or the formula in getting the electric potential region of space is V=350/sqrt of x^2+y^2. So the given data is x and y is equals to 2.6 and 2.8. So in my calculation i came up with an answer of 91.6
Answer:
3.24 m/s
Explanation:
Suppose that the boat sails with velocity (relative to water) direction being perpendicular to water stream. Had there been no water flow, it would have ended up 0m downstream
Therefore, the river speed is the one that push the boat 662 m downstream within 539 seconds. We can use this to calculate its magnitude

So the boat velocity vector relative to the bank is the sum of of the boat velocity vector relative to the water and the water velocity vector relative to the bank. Since these 2 component vectors are perpendicular to each other, the magnitude of the total vector can be calculated using Pythagorean formula:
m/s
This is a transform Boundrary
Answer:
1.697s
Explanation:
We use the second equation of free fall under gravity as follows;

Since the ball fell freely, u = 0m/s, therefore equation (1) reduces to

Given that h is the total height the ball falls through in time t seconds.
However, according to the stated problem the ball falls halfway in 1.2s, this simply implies that the ball falls through a distance of
in 1.2s. Hence we can write the following, given that
;

We can now proceed to find the time t for which it falls through h = 14.112m as follows;

Hope it help you 9.02x10^2