The wavelength of a wave (λ) is given by λ

where c is the wave speed and f is the frequency
Answer:
(a) a = - 201.8 m/s²
(b) s = 197.77 m
Explanation:
(a)
The acceleration can be found by using 1st equation of motion:
Vf = Vi + at
a = (Vf - Vi)/t
where,
a = acceleration = ?
Vf = Final Velocity = 0 m/s (Since it is finally brought to rest)
Vi = Initial Velocity = (632 mi/h)(1609.34 m/ 1 mi)(1 h/ 3600 s) = 282.53 m/s
t = time = 1.4 s
Therefore,
a = (0 m/s - 282.53 m/s)/1.4 s
<u>a = - 201.8 m/s²</u>
<u></u>
(b)
For the distance traveled, we can use 2nd equation of motion:
s = Vi t + (0.5)at²
where,
s = distance traveled = ?
Therefore,
s = (282.53 m/s)(1.4 s) + (0.5)(- 201.8 m/s²)(1.4 s)²
s = 395.54 m - 197.77 m
<u>s = 197.77 m</u>
Answer:
Explanation:
As the paint brush is dropped from the top of a tall ladder it started free falling
i.e. velocity of brush increases as it falls down due to the acceleration provided by gravity.
We know acceleration due to gravity is the attraction experienced by the object due to earth attraction
Value of acceleration due to gravity is constant i.e. 
Therefore the correct choice is
velocity is increasing and acceleration is constant
Answer:
a) r = 4.22 10⁷ m, b) v = 3.07 10³ m / s and c) a = 0.224 m / s²
Explanation:
a) For this exercise we will use Newton's second law where acceleration is centripetal and force is gravitational force
F = m a
a = v² / r
F = G m M / r²
G m M / r² = m v² / r
G M / r = v²
The squared velocity is a scalar and this value is constant, so let's use the uniform motion relationships
v = d / t
As the orbit is circular the distance is the length of the circle in 24 h time
d = 2π r
t = 24 h (3600 s / 1 h) = 86400 s
Let's replace
G M / r = (2π r / t)²
G M = 4 π² r³ / t²
r = ∛(G M t² / (4π²)
r = ∛( 6.67 10⁻¹¹ 5.98 10²⁴ 86400² / (4π²)) = ∛( 75.4 10²¹)
r = 4.22 10⁷ m
b) the speed module is
v = √G M / r
v = √(6.67 10⁻¹¹ 5.98 10²⁴/ 4.22 10⁷
v = 3.07 10³ m / s
c) the acceleration is
a = G M / r²
a = 6.67 10⁻¹¹ 5.98 10²⁴ / (4.22 10⁷)²
a = 0.224 m / s²
<h2>
Answer: a definition of the term black hole</h2>
This text is clearly a definition of the term black hole, made by the American astrophysicist Neil deGrasse Tyson.
However, the discussions about this subject are not new, since Einstein's theory of relativity already defined what a black hole is.
In this sense, a black hole is described as a "singularity" that consists of <u>a region of the space in which the density of matter tends to infinity.</u>
Although this is hard to find possible for classical physics; following what relativity establishes:<em> bodies within a gravitational field follow a curved space path. Then the more a body enters the black hole, the more curved the space will become, until, in the center, it will become infinitely curved. </em>