Let's call the original amount of money x.
We know that she has 2/5 of the original amount left, and that this is equal to $15.
Therefore, 2/5(x) = 15, and x = $37.50.
Answer:
5/8
Step-by-step explanation:
12+30+20+10 +8 =80 total marbles
12+30+8=50 red blue and black
50/80
5/8
-4d + 2(3+d)= -14
distribute the 2(3+d)
-4d + 6+ 2d= -14
Combine the like terms
-4d + 2d + 6= -14
-2d + 6 = -14
subtract 6 to -14
-2d = -20
divide by -2
d= -20/-2
d= 10
Check your answer
-4(10) + 2(3+ 10) = -14
-40 + 6 + 20
-40 + 26= -14
The pong will be at 3.5 m
Answer:Answer:

Step-by-step explanation:
Given the sequence -4,-6,-8..., in order to get sigma notation to represent the sum of the first seven terms of the sequence, we need to first calculate the sum of the first seven terms of the sequence as shown;
The sum of an arithmetic series is expressed as ![S_n = \frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
n is the number of terms
a is the first term of the sequence
d is the common difference
Given parameters
n = 7, a = -4 and d = -6-(-4) = -8-(-6) = -2
Required
Sum of the first seven terms of the sequence
![S_7 = \frac{7}{2}[2(-4)+(7-1)(-2)]\\\\S_7 = \frac{7}{2}[-8+(6)(-2)]\\\\S_7 = \frac{7}{2}[-8-12]\\\\\\S_7 = \frac{7}{2} * -20\\\\S_7 = -70](https://tex.z-dn.net/?f=S_7%20%3D%20%5Cfrac%7B7%7D%7B2%7D%5B2%28-4%29%2B%287-1%29%28-2%29%5D%5C%5C%5C%5CS_7%20%3D%20%20%5Cfrac%7B7%7D%7B2%7D%5B-8%2B%286%29%28-2%29%5D%5C%5C%5C%5CS_7%20%3D%20%20%5Cfrac%7B7%7D%7B2%7D%5B-8-12%5D%5C%5C%5C%5C%5C%5CS_7%20%3D%20%5Cfrac%7B7%7D%7B2%7D%20%2A%20-20%5C%5C%5C%5CS_7%20%3D%20-70)
The sum of the nth term of the sequence will be;
![S_n = \frac{n}{2}[2(-4)+(n-1)(-2)]\\\\S_n = \frac{n}{2}[-8+(-2n+2)]\\\\S_n = \frac{n}{2}[-6-2n]\\\\S_n = \frac{-6n}{2} - \frac{2n^2}{2}\\S_n = -3n-n^2\\\\S_n = -n(3+n)](https://tex.z-dn.net/?f=S_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B2%28-4%29%2B%28n-1%29%28-2%29%5D%5C%5C%5C%5CS_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B-8%2B%28-2n%2B2%29%5D%5C%5C%5C%5CS_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B-6-2n%5D%5C%5C%5C%5CS_n%20%3D%20%20%5Cfrac%7B-6n%7D%7B2%7D%20-%20%20%5Cfrac%7B2n%5E2%7D%7B2%7D%5C%5CS_n%20%3D%20-3n-n%5E2%5C%5C%5C%5CS_n%20%3D%20-n%283%2Bn%29)
The sigma notation will be expressed as
. <em>The limit ranges from 1 to 7 since we are to find the sum of the first seven terms of the series.</em>