Answer:
2) 433 mph
Explanation:
The final velocity of the raindrop as it reaches the ground can be found by using the equation for a uniformly accelerated motion:

where
v is the final velocity
u = 0 is the initial velocity (the raindrop starts from rest)
a = g = 9.8 m/s^2 is the acceleration due to gravity
d = 2 km = 2000 m is the distance covered
Solving for v,

And keeping in mind that
1 mile = 1609 metres
1 hour = 3600 s
The speed converted into miles per hour is

Given :
Mass of block , M = 20 kg .
Force applied , F = 80 N .
Acceleration of block ,
.
To Find :
The coefficient is Kinetic force friction between the block and the table .
Solution :
We know , Force equation on block is given by :

Therefore , coefficient is Kinetic force friction between the block and the table is 0.15 .
Hence , this is the required solution .
The answer is letter C.Weight (on Earth) is the force due to the mass of Earth attracting whatever mass is subject of discussion.
The force of attraction between any two masses is called Newton's Law of Universal Gravitation:


is simply a given constant.
If we're at the surface of Eath,

refers to the mass of the Earth,

to the mass of whatever is on the surface of Earth, and

to the radius of Earth.
Normally, we define a constant

to be equal to

; in which

is the mass of Earth and

the radius of earth;

happens to be around 9.8.
By that, we adapt the Law of Universal Gravitation to objects on the surface of Earth, we call that force Weight.

As you can see, weight is directly proportional to mass, more mass implies more weight.
(A) Standing waves are created by two identical waves reflecting off each other
(B) a general definition of a wave interference is, when more than on wave meet and interact in the same medium
Hope this helps :)
Answer:
F= 403429 kpa
Explanation:
Pressure is the product of force and area
Mathematically,
P=F*A -------where F is force and A is area.
A= 40 *0.1 = 4mm² -----convert to m²
A= 4e⁻⁶ m²
P= 4000000 pa
F= P/A = 4000000/4e⁻⁶
F= 403428793.493 pa
F= 403429 kpa