Answer:
Option D
Explanation:
The work done can be given by the mechanical energy used to do work, i.e., Kinetic energy and potential energy provided to do the work.
In all the cases, except option D, the energy provided to do the useful work is not zero and hence work done is not zero.
In option D, the box is being pulled with constant velocity, making the acceleration zero and thus Kinetic energy of the system is zero. Hence work done in this case is zero.
Answer:
i dont speack spanish sorry
Explanation: agian sorry
Newton's third law of motion
Explanation:
Newton's third law of motion states that:
<em>"When an object A exerts a force on an object B (action force), then object B exerts an equal and opposite force (reaction force) on object A"</em>
It is important to note that this law is always valid, even when it seems it is not.
Consider for example the gravitational force that the Earth exerts on your body (= your weight). We can say that this is the action force. It may seems that there is no reaction force in this case. However, this is not true: in fact, your body also exerts an equal and opposite force on the Earth, and this is the reaction force. The reason that explains why we don't notice any effect on Earth due to this force is that the mass of the Earth is much larger than your mass, therefore the acceleration produced on the Earth because of the force you apply is negligible.
It is also important to note that the action-reaction pair of forces always act on two different objects, so they never appear in the same free-body diagram.
Learn more about Newton's third law of motion:
brainly.com/question/11411375
#LearnwithBrainly
We have here what is known as parallel combination of resistors.
Using the relation:

And then we can turn take the inverse to get the effective resistance.
Where r is the magnitude of the resistance offered by each resistor.
In this case we have,
(every term has an mho in the end)

To ger effective resistance take the inverse:
we get,

The potential difference is of 9V.
So the current flowing using ohm's law,
V = IR
will be, 0.0139 Amperes.