Answer:
The new period of rotation using the new spring would be less than the period of rotation using the original spring
Explanation:
Generally the period of rotation of the mass is mathematically represented as

Here I is the moment of inertia of the mass about the rotation axis and k is the spring constant
Now looking at the equation we can tell that T is inversely proportional to the square root of the spring constant which means that for a larger spring constant the time period would be lesser
Justin notices a particular type of caterpillar feeds only on cottonwood trees in his neighborhood.In which way has Justin increased his scientific knowledge, Justin increased his powers of scientific observation. His observation is empirical evidence. Empirical relies on observation and experimentation.
It will help you..........
Answer:
the magnitude of acceleration will be 1.50m/s^2
Explanation:
To calculate your acceleration, you can use your formula that states that the net force on an object is equal to the mass of the object multiplied by the acceleration of the object. Fnet=ma
if you draw out this situation and label the forces you will have your vector towards the right with a magnitude of 20.0N and then your friction vector will be pointing to the left (in other words, in the negative direction) (opposing the direction of movement) with a magnitude of 5.00N, with the 10.0 kg box in the middle.
The net force will be calculated using F1+F2=Fnet where your F1=20.0N and F2= -5.00N (since it is towards the negative direction).
you will find that Fnet=15.0N
With that, plug in the values you know to calculate the acceleration of the block:
Fnet=ma
(15.0N)=(10.0kg)a from her you can divide both sides by 10 to isolate a:
1.50=a (and now make sure to label the units of your answer)
a=1.50m/s^2 (which is the typical unit for acceleration)
Answer:
540C.
Explanation:
A capacitor of capacitance C when charged to a voltage of V will have a charge Q given as follows;
Q = CV ----------(i)
From the question, the initial charge on the capacitor is the charge on it before it was connected to the resistor. In other words, the initial charge on the capacitor will have a maximum value which can be calculated using equation (i) above.
Where;
C = 6F
V = 90V
Substitute these values into equation (i) as follows;
Q = 6 x 90
Q = 540 C
Therefore, the initial charge on the capacitor is 540C.