1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
3 years ago
13

A projectile of mass m is fired horizontally with an initial speed of v0​ from a height of h above a flat, desert surface. Negle

cting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0​, h, and g : Are any of the answers changed if the initial angle is changed?
Physics
1 answer:
Grace [21]3 years ago
5 0

Complete question is;

A projectile of mass m is fired horizontally with an initial speed of v0 from a height of h above a flat, desert surface. Neglecting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0, h and g:

(a) the work done by the force of gravity on the projectile,

(b) the change in kinetic energy of the projectile since it was fired, and

(c) the final kinetic energy of the projectile.

(d) Are any of the answers changed if the initial angle is changed?

Answer:

A) W = mgh

B) ΔKE = mgh

C) K2 = mgh + ½mv_o²

D) No they wouldn't change

Explanation:

We are expressing in terms of m, v0​, h, and g. They are;

m is mass

v0 is initial velocity

h is height of projectile fired

g is acceleration due to gravity

A) Now, the formula for workdone by force of gravity on projectile is;

W = F × h

Now, Force(F) can be expressed as mg since it is force of gravity.

Thus; W = mgh

Now, there is no mention of any angles of being fired because we are just told it was fired horizontally.

Therefore, even if the angle is changed, workdone will not change because the equation doesn't depend on the angle.

B) Change in kinetic energy is simply;

ΔKE = K2 - K1

Where K2 is final kinetic energy and K1 is initial kinetic energy.

However, from conservation of energy, we now that change in kinetic energy = change in potential energy.

Thus;

ΔKE = ΔPE

ΔPE = U2 - U1

U2 is final potential energy = mgh

U1 is initial potential energy = mg(0) = 0. 0 was used as h because at initial point no height had been covered.

Thus;

ΔKE = ΔPE = mgh

Again like a above, the change in kinetic energy will not change because the equation doesn't depend on the angle.

C) As seen in B above,

ΔKE = ΔPE

Thus;

½mv² - ½mv_o² = mgh

Where final kinetic energy, K2 = ½mv²

And initial kinetic energy = ½mv_o²

Thus;

K2 = mgh + ½mv_o²

Similar to a and B above, this will not change even if initial angle is changed

D) All of the answers wouldn't change because their equations don't depend on the angle.

You might be interested in
A force causes a mass of 4 kg to have an acceleration of 8 m/s2. Suppose something causes the mass to be one-quarter of its orig
solniwko [45]

Explanation:

From Newton's second law:

F = ma

Given that m = 4 kg and a = 8 m/s²:

F = (4 kg) (8 m/s²)

F = 32 N

If m is reduced to 1 kg and F stays at 32 N:

32 N = (1 kg) a

a = 32 m/s²

So the acceleration increases by a factor of 4.

5 0
3 years ago
What type of tectonic plate boundary exists along the edge of the North American plate near the coast of Northern California, Or
kobusy [5.1K]

Answer:

-transform plate boundary

- false

4 0
3 years ago
If a galaxy has an apparent velocity of 2300 km/s, what is its distance if the Hubble constant is assumed to be 70 km/s/Mpc
prohojiy [21]

The distance of the galaxy is 32.86 Mpc.

Using the hubble law, v = H₀D where v = apparent velocity of galaxy = 2300 km/s, H = hubble constant = 70 km/s/Mpc and D = distance of galaxy.

Since we require the distance of the galaxy, we make D subject of the formula in the equation. So, we have

D = v/H₀

Substituting the values of the variables into the equation, we have

D = 2300 km/s ÷ 70 km/s/Mpc

D = 32.86 Mpc

So, the distance of the galaxy is 32.86 Mpc

Learn more about hubble law here:

brainly.com/question/18484687

4 0
2 years ago
I live for love, but i cant have it
luda_lava [24]

Answer:

Dont worry ,

One day you will find the love of your life

Explanation:

8 0
2 years ago
Read 2 more answers
Why doesn’t the moon fall toward the earth and smash into it?
yarga [219]

Gravity

The moon doesn't smash into the earth because the gravity from the earth keeps the moon in orbit around it.

8 0
3 years ago
Other questions:
  • Garrick rubs an inflated balloon against his hair. He then touches the balloon against a non-conducting wall.
    14·1 answer
  • during the spin dry cycle of a washing machine, the motor slows from 90 rad/s to 30 rad/s while turning the drum though an angle
    10·1 answer
  • Which property must be the same in order to stop the transfer of energy between two objects?
    11·1 answer
  • Name three types of electromagnetic radiation that can travel through empty space
    12·1 answer
  • What is the difference between an elastic and inelastic collision
    7·1 answer
  • How many sets of planets would you need to create the mass of the Sun?
    12·1 answer
  • Which of the following represents a case in which you are not accelerating? -Driving 60 miles per hour around a curve -Going fro
    15·1 answer
  • Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 N , one at an angle 15.0 ∘ west of north,
    6·1 answer
  • A car is traveling at 30m/s it accelerates steadily for 5 s after which it is travelling at 50 m/s calculate its acceleration?
    8·2 answers
  • Two homogeneous bodies of the same volume
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!