Answer:
-16/65
Step-by-step explanation:
Given sinα = 3/5 in quadrant 1;
Since sinα = opp/hyp
opp = 3
hyp = 5
adj^2 = hyp^2 - opp^2
adj^2 = 5^2 = 3^2
adj^2 = 25-9
adj^2 = 16
adj = 4
Since all the trig identity are positive in Quadrant 1, hence;
cosα = adj/hyp = 4/5
Similarly, if tanβ = 5/12 in Quadrant III,
According to trig identity
tan theta = opp/adj
opp = 5
adj = 12
hyp^2 = opp^2+adj^2
hyp^2 = 5^2+12^2
hyp^2 = 25+144
hyp^2 = 169
hyp = 13
Since only tan is positive in Quadrant III, then;
sinβ = -5/13
cosβ = -12/13
Get the required expression;
sin(α - β) = sinαcosβ - cosαsinβ
Substitute the given values
sin(α - β) = 3/5(-12/13) - 4/5(-5/13)
sin(α - β)= -36/65 + 20/65
sin(α - β) = -16/65
Hence the value of sin(α - β) is -16/65
Answer:
distributive property of multiplication over addition
Step-by-step explanation:
hope this helps! :)
![\left( \frac{27x^3}{8y^9}\right)^ \frac{5}{3} \\\\\\ =\left( \frac{(3x)^3}{(2y^3)^3}\right)^ \frac{5}{3} \\\\\\ = \frac{(3x)^{3 \times \frac{5}{3} }}{(2y^3)^{3 \times \frac{5}{3} }} \\\\\\ =\frac{(3x)^5}{(2y^3)^{5 }} \\\\\\ =\frac{243x^5}{32y^{15}}](https://tex.z-dn.net/?f=%5Cleft%28%20%5Cfrac%7B27x%5E3%7D%7B8y%5E9%7D%5Cright%29%5E%20%5Cfrac%7B5%7D%7B3%7D%20%20%5C%5C%5C%5C%5C%5C%20%3D%5Cleft%28%20%5Cfrac%7B%283x%29%5E3%7D%7B%282y%5E3%29%5E3%7D%5Cright%29%5E%20%5Cfrac%7B5%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20%3D%20%20%5Cfrac%7B%283x%29%5E%7B3%20%5Ctimes%20%20%5Cfrac%7B5%7D%7B3%7D%20%7D%7D%7B%282y%5E3%29%5E%7B3%20%5Ctimes%20%20%5Cfrac%7B5%7D%7B3%7D%20%7D%7D%20%5C%5C%5C%5C%5C%5C%20%3D%5Cfrac%7B%283x%29%5E5%7D%7B%282y%5E3%29%5E%7B5%20%7D%7D%20%5C%5C%5C%5C%5C%5C%20%3D%5Cfrac%7B243x%5E5%7D%7B32y%5E%7B15%7D%7D)
Now, If the exponent was negative like you asked....
1.c
2.d
3.b
4.a
Im sure about 1 and 4 but a little hesitant on 2 and 3 but good luck pretty sure it’s right
Answer: when a number is multiplied by itself, it will give you a perfect square.
For example: 5x5= 25 or 4x4= 16.
Step-by-step explanation: