Answer:
4.14°
Explanation:
given:
r = 1.2 km
v = 105 km/h
1) <em>convert your given </em>
a) r = 1.2 km to m = 1200m
b) v = 105 km/h to m/s = 29.2 m/s
2) <em>plug into your ideal banking angle equation</em>
(
) =
= 4.14°
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Answer:
The potential energy of the hiker is
.
Explanation:
Given that,
Mass of the hiker, m = 61 kg
Height above sea level, h = 1900 m
We need to find the potential energy associated with a 61-kg hiker atop New Hampshire's Mount Washington. The potential energy is given by :

g is the acceleration due to gravity

So, the potential energy of the hiker is
. Hence, this is the required solution.
Answer:
and
. The missing ion would be
.
Explanation:
In a double replacement reaction, two ionic compounds exchange their ions to produce two different ionic compounds.
In this question, the two ionic compounds are:
, and
.
In particular,
is made up of
ions and
ions, while
is made up of
ions and
ions.
In a binary ionic compound, cations (positive ions) can only bond to anions (negative ions.)
is a cation. In
,
was bounded
anions. During the reaction, it bonds with
anions to produce
.
is also a cation. In
,
was bounded to
ions. During the reaction, it bonds with
anions to produce
.
Hence, the two products will be
and
.
Note that charges on the ions must balance. For example, a
ion carries twice as much charge as an
ion. As a result, each
ion would bond with twice as many
ions as
would in
.
I attached a free body diagram for a better understanding of this problem.
We start making summation of Moments in A,



Then we make a summation of Forces in Y,



At the end we calculate the angle with the sin.

