Answer:It increases confidence because the more times you conduct the same experiment over and over should either prove your hypothesis right and wrong and eliminate any random occurrences that might affect your results.
Read more on Brainly.com - brainly.com/question/1492542#readmore
Explanation:
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer:
Echoes are the reflection of sound from relatively flat object that is far enough away that you can discern the time difference. Echoes are used to measure distance, velocity, and the shape of objects. Echoes off gratings result in an unusual pinging sound
Answer:
<em>Wave-Cut Platform</em>
Explanation:
A wave-cut platform, or shore platform <em>is the thin flat area frequently found at the bottom of a shore cliff or along a river, bay, or sea produced by erosion.</em>
When they become apparent as huge areas of flat rock, wave-cut platforms are often most noticeable at low tide.