We know that
scale factor=1/4
so
volume of the smaller pyramid=[scale factor]³*volume original pyramid
volume original pyramid=192 unit³
volume of the smaller pyramid=[1/4]³*192---> (1/64)*192----> 3 units ³
the answer is
3 units³
SA=2hpir+2pir^2=2pir(h+r)
V=hpir^2
SA=339
r=6
339=2pir(h+r)
339=2pi3(h+3)
339=6pi(h+3)
divide both sides by 6pi
56.5/pi=h+3
minus 3 both sides
(56.5/pi)-3=h
(56.5-3pi)/pi=h
v=hpir^2
v=((56.5-3pi)/pi)(pi)(6)^2
v=(56.5-3pi)(36)
v=2034-108pi
use pi=3.141592
v=1694.7079934123023302460345146058
round
1695 cubic cm
Answer:
See below
Step-by-step explanation:
Using PEDMAS:
O Subtract 12 from the product of 5 and 3, then multiply by 87
Answer:
1. 0.507
2. 5.006
3. 9.062
Step-by-step explanation:
If a value has “thousandths” in the question, the decimal place goes 4 places to the left: ex. 0.007.