Atom <span>Appears in these related concepts: Early Ideas about Atoms, Stable Isotopes, and Atomic Theory of Matter</span>balanced equation <span>Appears in these related concepts: Effect of a Common Ion on Solubility, Reaction Stoichiometry, and Mole-to-Mole Conversions</span>bond <span>Appears in these related concepts: Factors Affecting the Price of a Bond, Current Maturities of Long-Term Debt, and Preferred Stock</span>chemical reaction <span>Appears in these related concepts: Periodic Table Position and Electron Configuration, Free Energy Changes for Nonstandard States, and Physical and Chemical Changes to Matter</span>chemistry <span>Appears in these related concepts: Description of the Hydrogen Atom, Mass-to-Mole Conversions, and General Trends in Chemical Properties</span>element <span>Appears in these related concepts: Development of the Periodic Table, Elements and Compounds, and The Periodic Table</span>energy <span>Appears in these related concepts: Surface Tension, Energy Transportation, and Introduction to Work and Energy</span>gas <span>Appears in these related concepts: Oxidation Numbers of Metals in Coordination Compounds, Irreversible Addition Reactions, and Microstates and Entropy</span>isolated system <span>Appears in these related concepts: Conservation of Mechanical Energy, Internal Energy, and Comparison of Enthalpy to Internal Energy</span>liquid <span>Appears in these related concepts: Overview of Atomic Structure, Types of Synthetic Organic Polymers, and Three States of Matter</span>matter <span>Appears in these related concepts: Physical and Chemical Properties of Matter, Introduction: Physics and Matter, and The Study of Chemistry</span>mole <span>Appears in these related concepts: Avogadro's Number and the Mole, Molar Mass of Compounds, and Concept of Osmolality and Milliequivalent</span>solid <span>Appears in these related concepts: Extractive Metallurgy, Metagenomics, and Some Polycyclic Heterocycles</span>system <span>Appears in these related concepts: Definition of Management, <span>Local, regional, national, international, and global marketers </span>, and Additional cost and energy saving suggestions for pumps</span>
<span />
<u>Answer: </u>The correct answer is Option b.
<u>Explanation:</u>
Oxidizing agent is defined as the chemical reagent which helps the other chemical compound to get oxidized and itself gets reduced. The oxidation state for these species gets reduced because they are undergoing reduction reaction.
For the given chemical equation:

Oxidation state of Chromium is getting reduced from +6 to +3 and oxidation state of chlorine getting increased from -1 to 0.
Hence,
acts like and oxidizing agent because it is itself getting reduced to 
Therefore, the correct answer is Option b.
Answer:
1) After adding 15.0 mL of the HCl solution, the mixture is before the equivalence point on the titration curve.
2) The pH of the solution after adding HCl is 12.6
Explanation:
10.0 mL of 0.25 M NaOH(aq) react with 15.0 mL of 0.10 M HCl(aq). Let's calculate the moles of each reactant.


There is an excess of NaOH so the mixture is before the equivalence point. When HCl completely reacts, we can calculate the moles in excess of NaOH.
NaOH + HCl ⇒ NaCl + H₂O
Initial 2.5 × 10⁻³ 1.5 × 10⁻³ 0 0
Reaction -1.5 × 10⁻³ -1.5 × 10⁻³ 1.5 × 10⁻³ 1.5 × 10⁻³
Final 1.0 × 10⁻³ 0 1.5 × 10⁻³ 1.5 × 10⁻³
The concentration of NaOH is:
![[NaOH]=\frac{1.0 \times 10^{-3} mol }{25.0 \times 10^{-3} L} =0.040M](https://tex.z-dn.net/?f=%5BNaOH%5D%3D%5Cfrac%7B1.0%20%5Ctimes%2010%5E%7B-3%7D%20mol%20%7D%7B25.0%20%5Ctimes%2010%5E%7B-3%7D%20L%7D%20%3D0.040M)
NaOH is a strong base so [OH⁻] = [NaOH].
Finally, we can calculate pOH and pH.
pOH = -log [OH⁻] = -log 0.040 = 1.4
pH = 14 - pOH = 14 - 1.4 = 12.6
Answer:
The correct option is;
X, W, Y, Z
Explanation:
The parameters given are;
Spring (S), Spring Constant (N/m)
W, 24
X, 35
Y, 22
Z, 15
The equation for elastic potential energy,
, is 
The above equation can also be written as 
Where:
k = The spring constant in (N/m)
x = The spring extension
Therefore, since the elastic potential energy,
, of the spring is directly proportional to the spring constant, k, we have the springs with higher spring constant will have higher elastic potential energy,
, therefore the correct order is as follows;
X > W > Y > Z
Answer:
9.85mL
Explanation:
First, let us write a balanced equation for the reaction. This is illustrated below:
Ca(OH)2 + 2HNO3 —> Ca(NO3)2 + 2H2O
From the balanced equation above,
nA (mole of the acid) = 2
nB (mole of the base) = 1
Data obtained from the question include:
Vb (volume of the base) =?
Mb (Molarity of base) = 0.155 M
Va (volume of the acid) = 28.8 mL
Ma (Molarity of acid) = 0.106 M
Using MaVa/MbVb = nA/nB, the volume of calcium hydroxide (i.e the base) can be obtain as follow:
MaVa/MbVb = nA/nB
0.106 x 28.8 / 0.155 x Vb = 2/1
Cross multiply to express in linear form as shown below:
2 x 0.155 x Vb = 0.106 x 28.8
Divide both side by 2 x 0.155
Vb = (0.106 x 28.8) / (2 x 0.155)
Vb = 9.85mL
Therefore, the Volume of calcium hydroxide is 9.85mL