Hey there!:
Molar mass MgCl2 = 95.2110 g/mol
So:
1 mole MgCl2 -------------- 95.2110 g
moles MgCl2 ---------------- 319 g
moles MgCl2 = 319 * 1 / 95.2110
moles MgCl2 = 319 / 95.2110
=> 3.350 moles of MgCl2
Hope that helps!
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
The cohesive forces between liquid molecules are responsible for the phenomenon known as surface tension<span>. I think the correct answer is option A. H2O will have the highest surface tension due to the hydrogen bonds that are present. Hope this answers the question. Have a nice day.</span>
Answer:
Substance at the beginning of a reaction- reactant
Substance at the end of a reaction- product
Number placed before a compound in a chemical equation- stoichiometric coefficient
Explanation:
In a reaction equation, the species written on the left hand side of the equation are called the reactants.
The reactants combine to form the species on the right hand side of the reaction equation called products.
The stoichiometric coefficient is a number written before the formula of a compound in the reaction equation.