Answer:
One mole of cadmium (6multiply1023 atoms) has a mass of 112 grams, as shown in the periodic table on the inside front cover of the textbook. The density of cadmium is 8.65 grams/cm3.
Explanation:
Answer:
I think it's more than 100,000 mold
The wrong answers for sure are B and D, I assume the answer is C
Answer:
The equation to show the the correct form to show the standard molar enthalpy of formation:

Explanation:
The standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states.
Given, that 1 mole of
gas and 1 mole of
liquid gives 2 moles of HBr gas as a product.The reaction releases 72.58 kJ of heat.

Divide the equation by 2.

The equation to show the the correct form to show the standard molar enthalpy of formation:

Answer: The correct answer is -297 kJ.
Explanation:
To solve this problem, we want to modify each of the equations given to get the equation at the bottom of the photo. To do this, we realize that we need SO2 on the right side of the equation (as a product). This lets us know that we must reverse the first equation. This gives us:
2SO3 —> O2 + 2SO2 (196 kJ)
Remember that we take the opposite of the enthalpy change (reverse the sign) when we reverse the equation.
Now, both equations have double the coefficients that we would like (for example, there is 2S in the second equation when we need only S). This means we should multiply each equation (and their enthalpy changes) by 1/2. This gives us:
SO3 —>1/2O2 + SO2 (98 kJ)
S + 3/2O2 —> SO3 (-395 kJ)
Now, we add the two equations together. Notice that the SO3 in the reactants in the first equation and the SO3 in the products of the second equation cancel. Also note that O2 is present on both sides of the equation, so we must subtract 3/2 - 1/2, giving us a net 1O2 on the left side of the equation.
S + O2 —> SO2
Now, we must add the enthalpies together to get our final answer.
-395 kJ + 98 kJ = -297 kJ
Hope this helps!