Answer:
81.59%
Explanation:
First we <u>convert 107.50 g of NH₃ into moles</u>, using its <em>molar mass</em>:
- 107.50 g NH₃ ÷ 17 g/mol = 6.32 mol NH₃
Now we <u>calculate how many moles of NO would have been formed by the complete reaction of 6.32 moles of NH₃</u>:
- 6.32 mol NH₃ *
= 6.32 mol NO
Then we <u>convert 6.32 moles of NO to grams</u>, using its <em>molar mass</em>:
- 6.32 mol NO * 30 g/mol = 189.60 g NO
Finally we <u>calculate the percent yield</u>:
- 154.70 g / 189.60 g * 100% = 81.59%
The answer is "Liquid".
Hope I could help you!
Have a great day ;)
<u>Answer:</u> The entropy change of the process is 
<u>Explanation:</u>
To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change
n = moles of acetone = 6.3 moles
= enthalpy of fusion = 5.7 kJ/mol = 5700 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![-94.7^oC=[273-94.7]=178.3K](https://tex.z-dn.net/?f=-94.7%5EoC%3D%5B273-94.7%5D%3D178.3K)
Putting values in above equation, we get:

Hence, the entropy change of the process is 
Answer:
- <u>Freezing point: - 1.83ºC</u>
- <u>Boiling point: 100.50ºC</u>
Explanation:
The <em>freezing point</em> and<em> boiling point</em> of solvents, when a solute is added, will change accordingly to the concentration of the solute particles.
The freezing point will decrease and the boiling point will increase. These are two colligative properties.
<u></u>
<u>Find attached the file with the whole answer, as the site is not uploading the answer in here.</u>