Answer: the pH of the solution is 4.52
Explanation:
Consider the weak acid as Ha, it is dissociated as expressed below
HA H⁺ + A⁻
the Henderson -Haselbach equation can be expressed as;
pH = pKa + log( [A⁻] / [HA])
the weak acid is dissociated into H⁺ and A⁻ ions in the solution.
now the conjugate base of the weak acid HA is
HA(aq) {weak acid} H⁺(aq) + A⁻(aq) {conjugate base}
so now we calculate the value of Kₐ as well as pH value by substituting the values of the concentrations into the equation;
pKₐ = -logKₐ
pKₐ = -log ( 7.4×10⁻⁵ )
pKₐ = 4.13
now thw pH is
pH = pKₐ + log( [A⁻] / [HA])
pH = 4.13 + log( [0.540] / [0.220])
pH = 4.13 + 0.3899
pH = 4.5199 = 4.52
Therefore the pH of the solution is 4.52
Answer:
D
Explanation:
The indivisibility of an atom was proved wrong an atom can be further subdivided into protons, neutrons and electrons. However an atom is the smallest particle that takes part in chemical reactions......
hope i helped
pls mark brainliest,,,,,thanks
Answer:
Explanation:
Using freezing point depression formula,
ΔTemp.f = Kf * b * i
Where,
ΔTemp.f = temp.f(pure solvent) - temp.f(solution)
b = molality
i = van't Hoff factor
Kf = cryoscopic constant
= 1.86°C/m for water
= (0 - (-5.58))/1.86
= 3.00 mol/kg
Assume 1 kg of water(solvent)
= (3.00 x 1)
= 3.00 mol.
Answer: mmmmmm asking for mrs.howard work I see lol good luck grace
Explanation: