Answer:
We are moving against gravity
Answer:
25 mM Tris HCl and 0.1% w/v SDS
Explanation:
A <em>10X solution</em> is ten times more concentrated than a <em>1X solution</em>. The stock solution is generally more concentrated (10X) and for its use, a dilution is required. Thus, to prepare a buffer 1X from a 10X buffer, you have to perform a dilution in a factor of 10 (1 volume of 10X solution is taken and mixed with 9 volumes of water). In consequence, all the concentrations of the components are diluted 10 times. To calculate the final concentration of each component in the 1X solution, we simply divide the concentration into 10:
(250 mM Tris HCl)/10 = 25 mM Tris HCl
(1.92 M glycine)/10 = 0.192 M glycine
(1% w/v SDS)/10 = 0.1% w/v SDS
Therefore the final concentrations of Tris and SDS are 25 mM and 0.1% w/v, respectively.
Answer:
Option A. It has stayed the same.
Explanation:
To answer the question given above, we assumed:
Initial volume (V₁) = V
Initial temperature (T₁) = T
Initial pressure (P₁) = P
From the question given above, the following data were:
Final volume (V₂) = 2V
Final temperature (T₂) = 2T
Final pressure (P₂) =?
The final pressure of the gas can be obtained as follow:
P₁V₁/T₁ = P₂V₂/T₂
PV/T = P₂ × 2V / 2T
Cross multiply
P₂ × 2V × T = PV × 2T
Divide both side by 2V × T
P₂ = PV × 2T / 2V × T
P₂ = P
Thus, the final pressure is the same as the initial pressure.
Option A gives the correct answer to the question.