Answer:
Atomic number 29
Atomic mass 63.546 g.mol -1
Electronegativity according to Pauling 1.9
Density 8.9 g.cm-3 at 20°C
Melting point 1083 °C
Answer:
0.128 g
Explanation:
Given data:
Volume of gas = 146.7 cm³
Pressure of gas = 106.5 Kpa
Temperature of gas = 167°C
Mass of oxygen gas = ?
Solution:
Volume of gas = 146.7 cm³ (146.7 /1000 = 0.1467 L)
Pressure of gas = 106.5 Kpa (106.5/101 = 1.1 atm)
Temperature of gas = 167°C (167 +273.15 = 440.15 K)
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.1 atm× 0.1467 L / 0.0821 atm.L/ mol.K × 440.15 K
n = 0.1614 / 36.14 /mol
n = 0.004 mol
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 0.004 mol × 32 g/mol
Mass = 0.128 g
Answer:
I do not know the Answer I'm just trying to get my point
Explanation:
Thank you
Answer is: glycerol because it is more viscous and has a larger molar mass.
Viscosity depends on intermolecular interactions.
The predominant intermolecular force in water and glycerol is hydrogen bonding.
Hydrogen bond is an electrostatic attraction between two polar groups in which one group has hydrogen atom (H) and another group has highly electronegative atom such as nitrogen (like in this molecule), oxygen (O) or fluorine (F).
Answer:
A Brønsted-Lowry acid.
A Brønsted-Lowry base.
Ammonia is an acceptor of proton.
Explanation:
A Brønsted-Lowry acid is any atom that can donate a proton (H +) to another atom or molecule whereas Brønsted-Lowry base is any species that can accept a proton from another atom or molecule or in other words, a Brønsted-Lowry acid is a proton donor, while on the other hand, a Brønsted-Lowry base is a proton acceptor. The ammonia molecule accepts the hydrogen ion is considered as the Brønsted-Lowry base.