First the amount of work done in lifting up the snow ball to a height of 1.2m is equal to the potential energy of the ball after the lift.
Therefore mass× gravitational pull×height will give us the work done
=3.2kg ×9.8N/kg×1.2m
=37.632J
then, the work done over the 25m distance if found by the following formula: work done=force×distance
=1.0N×25m
=25J
On reaching the headless snowman you have to lift the ball a further 1.1m to place it as the head 2.3m high.
therefore this will be a change in potential energy which is equal to work done in lifting the ball the additional 1.1m
=m×g×h
=3.2kg×9.8N/kg×1.1m
=34.496J
To get the total we add the amount of work done in the various instances.
Answer:
Propagation of an Electromagnetic Wave. Electromagnetic waves are waves which can travel through the vacuum of outer space. Mechanical waves, unlike electromagnetic waves, require the presence of a material medium in order to transport their energy from one location to another.
D.as a magnet is being thrust through the coil
Answer:
a) V ≈ 125 m/s; b) Δt = 13.24 s; c) ΔS ≈ 1450 m
Explanation:
a) We have just to calculate the vector resultant.
V² = 106² + 66.2²
V² = 15618.44
V ≈ 125 m/s
b) The time of flight is equal to the time to reach the maximum height summed to the time to reach the land.
In vertical:
V = V₀ + a * t
V = 66.2 - g * t
0 = 66.2 - 9.8 * t
t ≈ 6.76 s
So: Δt = 13.24 s
c) In horizontal:
V = ΔS / Δt
106 = ΔS / 13.52 ⇒ ΔS = 106 * 13.52
ΔS = 106 * 13.52
ΔS = 1433,12
ΔS ≈ 1450 m
Power is the amount of energy consumed per unit time. Having no direction, it is a scalar quantity. <span>As is implied by the equation for </span>power<span>, a unit of </span>power <span>is equivalent to a unit of work divided by a unit of time. The formula would be as follows:
P = W/t
We calculate as follows:
500 W = 15000 J / t
t = 30 s</span>